ARTICLE

A weak dispersion 3D wave field simulation method: A predictor-corrector method of the implicit Runge-Kutta scheme

NIAN WANG1 YANJIE ZHOU1,2
Show Less
1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China. happyxiaoxi114@163.com,
2 Department of Mathematics, School of Science, Beijing Technology and Business University (BTBU), Beijing 100048, P.R. China.,
JSE 2014, 23(5), 431–462;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, N. and Zhou, Y., 2014. A weak dispersion 3D wave field simulation method: A predictor-corrector method of the implicit Runge-Kutta scheme. Journal of Seismic Exploration, 23: 431-462. We propose a numerical method for solving the acoustic- and elastic-wave equations, which is called the predictor-corrector method of the implicit Runge-Kutta scheme (IRK-PCM). This work is an extension of the corresponding 2D IRK-PCM to the 3D case. To solve wave equations, we first transform them into a system of semi-discrete ordinary differential equations (ODEs). And then we use the local interpolation theory for spatial discretization, and use the 2-step predictor-corrector method based on an implicit Runge-Kutta method for the temporal discretization. In this paper, we investigate the theoretical property of the 3D IRK-PCM including stability criteria, approximation error, numerical dispersion, and computational efficiency when solving the acoustic wave equation. Seismic wave field simulations for both acoustic and elastic models show that the 3D IRK-PCM can suppress effectively the numerical dispersion caused by the discretization of wave equations when coarse grids are used, high frequency bands are chosen, or models have large velocity contrasts between adjacent layers. Whereas other high-order schemes such as the fourth-order LWC and the staggered-grid (SG) method suffer from serious numerical dispersion for the same cases. It suggests that to achieve the same accuracy, the 3D IRK-PCM can increase greatly the computational speed and save significantly the storage space. We conclude that the IRK-PCM provides us an useful tool for the 3D large-scale wave field simulation, reverse time migration and full waveform inversion.

Keywords
wave equation
wave-field simulation
numerical dispersion
implicit Runge-Kutta method
predictor-corrector method
anisotropy
shear wave splitting.
References
  1. Aki, K. and Richards, P.G., 1980. Quantitative Seismology. W.H. Freeman and Co., San
  2. Francisco.
  3. Alford, R.M., Kelly, K.R. and Boore, D.M., 1974. Accuracy of finite-difference modeling of the
  4. acoustic wave equation. Geophysics, 39: 834-842.
  5. Chen, S., Yang, D.H. and Deng, X.Y., 2009. A weighted Runge-Kutta method with weak
  6. numerical dispersion for solving wave equations. Commun. Comput. Phys., 7: 1027-1048.
  7. Ciarlet, P.G., 1978. The Finite Element Method for Elliptic Problems. North-Holland Publishing
  8. Co., Amsterdam.
  9. Dablain, M.A., 1986. The application of high-order differencing to the scalar wave equation.
  10. Geophysics, 51: 54-66.
  11. Eriksson, K. and Johnson, C., 1991. Adaptive finite element methods for parabolic problems I: A
  12. linear model problem. SIAM J. Numer. Anal., 28: 43-77.
  13. Faria, E.L., and Stoffa, P.L., 1994. Finite-difference modeling in transversely isotropic media.
  14. Geophysics. 59: 282-289.
  15. Fei, T. and Larner, K., 1995. Elimination of numerical dispersion in finite-difference modeling and
  16. migration by flux-corrected transport. Geophysics, 60: 1830-1842.
  17. Fornberg, B., 1990. High-order finite differences and pseudo-spectral method on staggered grids.
  18. SIAM J. Numer. Anal. 27: 904-918.
  19. Gottlied, D. and Orzag, S., 1977. Numerical Analysis of Spectral Methods: Theory and
  20. Applications. SIAM, Philadelphia.
  21. Guan, Z. and Lu, J.F., 2006. Numerical Methods. Tsinghua University Press, Beijing.
  22. Hairer, E., Norsett, S.P. and Wanner, G., 1993. Solving Ordinary Differential Equations. I:
  23. Nonstiff Problems. Springer-Verlag, Berlin, Heidelberg.
  24. Igel, H., Mora, P. and Riollet, B., 1995. Anisotropic wave propagation through finite-difference
  25. grids. Geophysics, 60: 1203-1216.
  26. Jarchow, C.M., Catchings, R.D. and Lutter, W.J., 1994. Large-explosive source, wide-recording
  27. aperture, seismic profiling on the Columbia Plateau, Washington. Geophysics, 59: 259-271.
  28. Johnson, C., 1990. Adaptive finite element methods for diffusion and convection problems. Comput.
  29. Methods Appl. Mech. Engin., 82: 301-322.
  30. Kelly, K., Ward, R., Treitel, S. and Alford, R., 1976. Synthetic seismograms: a finite-difference
  31. approach. Geophysics, 41: 2-27.
  32. Komatitsch, D. and Vilotte, J.P., 1998. The Spectral Element method: an efficient tool to simulate
  33. the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am., 88:
  34. 368-392.
  35. Komatitsch, D., Barnes, C. and Tromp, J., 2000. Simulation of anisotropic wave propagation based
  36. upon a spectral-element method. Geophysics, 65: 1251-1260.
  37. Konddoh, Y., Hosaka, Y. and Ishii, K., 1994. Kernel optimum nearly analytical discretization
  38. algorithm applied to parabolic and hyperbolic equations. Comput. Math. Appl., 27: 59-90.
  39. Lax, P.D. and Wendroff, B., 1964. Difference schemes for hyperbolic equations with high order
  40. of accuracy. Commun. Pure Appl. Math., 172: 381-398.
  41. Ma, X., Yang, D.H. and Liu, F., 2011. A nearly analytic symplectically partitioned Runge-Kutta
  42. method for 2D seismic wave equations. Geophys. J. Internat., 187: 480-496.
  43. Ma, X., Yang, D.H., Song, G.J. and Wang, M.X., 2014. A low-dispersive symplectic partitioned
  44. PREDICTOR-CORRECTOR METHOD 459
  45. Runge-Kutta method for solving seismic wave equations - I. Scheme and theoretical analysis.
  46. Bull. Seismol. Soc. Am., 104 (5) (doi: 10.1785/0120120210, in press).
  47. Mavko, G., Mukerji, T. and Dvorkin, J., 2003. The Rock Physics Handbook, 2nd ed. Cambridge
  48. Univ. Press, Cambridge.
  49. Mocoz, P., Kristek, J. and Halada, L., 2000. 3D fourth-order staggered-grid finite-difference
  50. schemes: Stability and grid dispersion, Bull. Seism. Soc. Am., 90: 587-603.
  51. Richtmyer, R.D. and Morton, K.W., 1967. Difference Methods for Initial Value Problems.
  52. Interscience, New York.
  53. Sei, A. and Symes, W., 1994. Dispersion analysis of numerical wave propagation and its
  54. computational consequences. J. Sci. Comput., 10: 1-27.
  55. Solin, P., Segeth, K. and Dolezel, I., 2003. Higher-Order Finite Element Methods. Chapman &
  56. Hall/CRC Press, London.
  57. Takeuchi, N. and Geller, R.J., 2000. Optimally accurate second order time-domain finite-difference
  58. scheme for computing synthetic seismograms in 2-D and 3-D media. Phys. Earth Planet.
  59. Inter., 119: 99-131.
  60. Turner, M.J., Clough, R.W., Martin, H.C. and Topp, L.J., 1956. Stiffness and deflection analysis
  61. of complex structures. J. Aeronaut. Sci., 23: 805-823.
  62. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference
  63. method. Geophysics, 51: 889-901.
  64. Wang, N., Yang, D.H. and Liu, F.Q., 2012. Weak dispersion wave-field simulations: a
  65. predictor-corrector algorithm for solving acoustic and elastic wave eqs., J. Seismic Explor.,
  66. 21: 125-152.
  67. Wang, S. Q., Yang, D.H. and Yang, K.D., 2002. Compact finite difference scheme for elastic
  68. equations. J. Tsinghua Univ. (Sci. & Tech), 42: 1128-1131 (in Chinese).
  69. Whiteman, J.R., 1975. A Bibliography for Finite Elements. Academic Press Inc., New York.
  70. Yang, D.H. and Wang, L., 2010. A split-step algorithm for effectively suppressing the numerical
  71. dispersion for 3D seismic propagation modeling. Bull. Seismol. Soc. Am., 100: 1470-1484.
  72. Yang, D.H., Liu, E. and Zhang, Z.J., 2008. Evaluation of the u-W finite element method in
  73. anisotropic porous media. J. Seismic Explor., 17: 273-299.
  74. Yang, D.H., Liu, E.R., Zhang, Z.J. and Teng, J.W., 2002. Finite-difference modeling in
  75. two-dimensional anisotropic media using a flux-corrected transport technique. Geophys. J.
  76. Internat., 148: 320-328.
  77. Yang, D.H., Song, G.J. and Zhang, J.H., 2010. A modified NAD algorithm with minimum
  78. numerical dispersion for simulation of anisotropic wave propagation. J. Seismic Explor., 19:
  79. 21-42.
  80. Yang, D.H., Song, G.J. and Lu, M., 2007. Optimally accurate nearly analytic discrete scheme for
  81. wave-field simulation in 3D anisotropic media. Bull. Seismol. Soc. Am., 97: 1557-1569.
  82. Yang, D.H., Song, G.J., Chen, S. and Hou, B.Y., 2007. An improved nearly analytical discrete
  83. method: an efficient tool to simulate the seismic response of 2D porous structures. J.
  84. Geophys. Engin., 4: 40-52.
  85. Yang, D.H., Teng, J.W., Zhang, Z.J. and Liu, E.R., 2003. A nearly-analytic discrete method for
  86. acoustic and elastic wave equations in anisotropic media. Bull. Seismol. Soc. Am., 93:
  87. 882-890.
  88. Yang, D.H., Wang, M.X. and Ma, X., 2014. Symplectic stereomodelling method for solving elastic
  89. wave equations in porous media. Geophys. J. Internat., 196: 560-579.
  90. Yang, D.H., Wang, N. and Liu, E., 2012. A strong stability-preserving predictor corrector method
  91. for the simulation of elastic wave propagation in anisotropic media. Commun. Comput.
  92. Phys., 12: 1006-1032.
  93. Zahradnik, J., Moczo, P. and Hron, T., 1993. Testing four elastic finite-difference schemes for
  94. behavior at discontinuities. Bull. Seismol. Soc. Am., 83: 107-129.
  95. Zhang, Z.J., Wang, G.J. and Harris, M.J., 1999. Multi-component wave-field simulation in viscous
  96. extensively dilatancy anisotropic media. Phys. Earth Planet. Inter., 114: 25-38.
  97. Zheng, H.S., Zhang, Z.J. and Liu, E.R., 2006. Non-linear seismic wave propagation in anisotropic
  98. media using the flux-corrected transport technique. Geophys. J. Int., 165: 943-956.
  99. 460 WANG & ZHOU
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing