A weak dispersion 3D wave field simulation method: A predictor-corrector method of the implicit Runge-Kutta scheme

Wang, N. and Zhou, Y., 2014. A weak dispersion 3D wave field simulation method: A predictor-corrector method of the implicit Runge-Kutta scheme. Journal of Seismic Exploration, 23: 431-462. We propose a numerical method for solving the acoustic- and elastic-wave equations, which is called the predictor-corrector method of the implicit Runge-Kutta scheme (IRK-PCM). This work is an extension of the corresponding 2D IRK-PCM to the 3D case. To solve wave equations, we first transform them into a system of semi-discrete ordinary differential equations (ODEs). And then we use the local interpolation theory for spatial discretization, and use the 2-step predictor-corrector method based on an implicit Runge-Kutta method for the temporal discretization. In this paper, we investigate the theoretical property of the 3D IRK-PCM including stability criteria, approximation error, numerical dispersion, and computational efficiency when solving the acoustic wave equation. Seismic wave field simulations for both acoustic and elastic models show that the 3D IRK-PCM can suppress effectively the numerical dispersion caused by the discretization of wave equations when coarse grids are used, high frequency bands are chosen, or models have large velocity contrasts between adjacent layers. Whereas other high-order schemes such as the fourth-order LWC and the staggered-grid (SG) method suffer from serious numerical dispersion for the same cases. It suggests that to achieve the same accuracy, the 3D IRK-PCM can increase greatly the computational speed and save significantly the storage space. We conclude that the IRK-PCM provides us an useful tool for the 3D large-scale wave field simulation, reverse time migration and full waveform inversion.
- Aki, K. and Richards, P.G., 1980. Quantitative Seismology. W.H. Freeman and Co., SanFrancisco.
- Alford, R.M., Kelly, K.R. and Boore, D.M., 1974. Accuracy of finite-difference modeling of theacoustic wave equation. Geophysics, 39: 834-842.
- Chen, S., Yang, D.H. and Deng, X.Y., 2009. A weighted Runge-Kutta method with weaknumerical dispersion for solving wave equations. Commun. Comput. Phys., 7: 1027-1048.
- Ciarlet, P.G., 1978. The Finite Element Method for Elliptic Problems. North-Holland PublishingCo., Amsterdam.
- Dablain, M.A., 1986. The application of high-order differencing to the scalar wave equation.Geophysics, 51: 54-66.
- Eriksson, K. and Johnson, C., 1991. Adaptive finite element methods for parabolic problems I: Alinear model problem. SIAM J. Numer. Anal., 28: 43-77.
- Faria, E.L., and Stoffa, P.L., 1994. Finite-difference modeling in transversely isotropic media.Geophysics. 59: 282-289.
- Fei, T. and Larner, K., 1995. Elimination of numerical dispersion in finite-difference modeling andmigration by flux-corrected transport. Geophysics, 60: 1830-1842.
- Fornberg, B., 1990. High-order finite differences and pseudo-spectral method on staggered grids.SIAM J. Numer. Anal. 27: 904-918.
- Gottlied, D. and Orzag, S., 1977. Numerical Analysis of Spectral Methods: Theory andApplications. SIAM, Philadelphia.
- Guan, Z. and Lu, J.F., 2006. Numerical Methods. Tsinghua University Press, Beijing.
- Hairer, E., Norsett, S.P. and Wanner, G., 1993. Solving Ordinary Differential Equations. I:
- Nonstiff Problems. Springer-Verlag, Berlin, Heidelberg.
- Igel, H., Mora, P. and Riollet, B., 1995. Anisotropic wave propagation through finite-differencegrids. Geophysics, 60: 1203-1216.
- Jarchow, C.M., Catchings, R.D. and Lutter, W.J., 1994. Large-explosive source, wide-recordingaperture, seismic profiling on the Columbia Plateau, Washington. Geophysics, 59: 259-271.
- Johnson, C., 1990. Adaptive finite element methods for diffusion and convection problems. Comput.Methods Appl. Mech. Engin., 82: 301-322.
- Kelly, K., Ward, R., Treitel, S. and Alford, R., 1976. Synthetic seismograms: a finite-differenceapproach. Geophysics, 41: 2-27.
- Komatitsch, D. and Vilotte, J.P., 1998. The Spectral Element method: an efficient tool to simulatethe seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am., 88:368-392.
- Komatitsch, D., Barnes, C. and Tromp, J., 2000. Simulation of anisotropic wave propagation basedupon a spectral-element method. Geophysics, 65: 1251-1260.
- Konddoh, Y., Hosaka, Y. and Ishii, K., 1994. Kernel optimum nearly analytical discretizationalgorithm applied to parabolic and hyperbolic equations. Comput. Math. Appl., 27: 59-90.
- Lax, P.D. and Wendroff, B., 1964. Difference schemes for hyperbolic equations with high orderof accuracy. Commun. Pure Appl. Math., 172: 381-398.
- Ma, X., Yang, D.H. and Liu, F., 2011. A nearly analytic symplectically partitioned Runge-Kuttamethod for 2D seismic wave equations. Geophys. J. Internat., 187: 480-496.
- Ma, X., Yang, D.H., Song, G.J. and Wang, M.X., 2014. A low-dispersive symplectic partitionedPREDICTOR-CORRECTOR METHOD 459
- Runge-Kutta method for solving seismic wave equations - I. Scheme and theoretical analysis.
- Bull. Seismol. Soc. Am., 104 (5) (doi: 10.1785/0120120210, in press).
- Mavko, G., Mukerji, T. and Dvorkin, J., 2003. The Rock Physics Handbook, 2nd ed. CambridgeUniv. Press, Cambridge.
- Mocoz, P., Kristek, J. and Halada, L., 2000. 3D fourth-order staggered-grid finite-differenceschemes: Stability and grid dispersion, Bull. Seism. Soc. Am., 90: 587-603.
- Richtmyer, R.D. and Morton, K.W., 1967. Difference Methods for Initial Value Problems.Interscience, New York.
- Sei, A. and Symes, W., 1994. Dispersion analysis of numerical wave propagation and itscomputational consequences. J. Sci. Comput., 10: 1-27.
- Solin, P., Segeth, K. and Dolezel, I., 2003. Higher-Order Finite Element Methods. Chapman &Hall/CRC Press, London.
- Takeuchi, N. and Geller, R.J., 2000. Optimally accurate second order time-domain finite-differencescheme for computing synthetic seismograms in 2-D and 3-D media. Phys. Earth Planet.Inter., 119: 99-131.
- Turner, M.J., Clough, R.W., Martin, H.C. and Topp, L.J., 1956. Stiffness and deflection analysisof complex structures. J. Aeronaut. Sci., 23: 805-823.
- Virieux, J., 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-differencemethod. Geophysics, 51: 889-901.
- Wang, N., Yang, D.H. and Liu, F.Q., 2012. Weak dispersion wave-field simulations: apredictor-corrector algorithm for solving acoustic and elastic wave eqs., J. Seismic Explor.,21: 125-152.
- Wang, S. Q., Yang, D.H. and Yang, K.D., 2002. Compact finite difference scheme for elasticequations. J. Tsinghua Univ. (Sci. & Tech), 42: 1128-1131 (in Chinese).
- Whiteman, J.R., 1975. A Bibliography for Finite Elements. Academic Press Inc., New York.
- Yang, D.H. and Wang, L., 2010. A split-step algorithm for effectively suppressing the numericaldispersion for 3D seismic propagation modeling. Bull. Seismol. Soc. Am., 100: 1470-1484.
- Yang, D.H., Liu, E. and Zhang, Z.J., 2008. Evaluation of the u-W finite element method inanisotropic porous media. J. Seismic Explor., 17: 273-299.
- Yang, D.H., Liu, E.R., Zhang, Z.J. and Teng, J.W., 2002. Finite-difference modeling intwo-dimensional anisotropic media using a flux-corrected transport technique. Geophys. J.Internat., 148: 320-328.
- Yang, D.H., Song, G.J. and Zhang, J.H., 2010. A modified NAD algorithm with minimumnumerical dispersion for simulation of anisotropic wave propagation. J. Seismic Explor., 19:21-42.
- Yang, D.H., Song, G.J. and Lu, M., 2007. Optimally accurate nearly analytic discrete scheme forwave-field simulation in 3D anisotropic media. Bull. Seismol. Soc. Am., 97: 1557-1569.
- Yang, D.H., Song, G.J., Chen, S. and Hou, B.Y., 2007. An improved nearly analytical discretemethod: an efficient tool to simulate the seismic response of 2D porous structures. J.Geophys. Engin., 4: 40-52.
- Yang, D.H., Teng, J.W., Zhang, Z.J. and Liu, E.R., 2003. A nearly-analytic discrete method foracoustic and elastic wave equations in anisotropic media. Bull. Seismol. Soc. Am., 93:882-890.
- Yang, D.H., Wang, M.X. and Ma, X., 2014. Symplectic stereomodelling method for solving elasticwave equations in porous media. Geophys. J. Internat., 196: 560-579.
- Yang, D.H., Wang, N. and Liu, E., 2012. A strong stability-preserving predictor corrector methodfor the simulation of elastic wave propagation in anisotropic media. Commun. Comput.Phys., 12: 1006-1032.
- Zahradnik, J., Moczo, P. and Hron, T., 1993. Testing four elastic finite-difference schemes forbehavior at discontinuities. Bull. Seismol. Soc. Am., 83: 107-129.
- Zhang, Z.J., Wang, G.J. and Harris, M.J., 1999. Multi-component wave-field simulation in viscousextensively dilatancy anisotropic media. Phys. Earth Planet. Inter., 114: 25-38.
- Zheng, H.S., Zhang, Z.J. and Liu, E.R., 2006. Non-linear seismic wave propagation in anisotropicmedia using the flux-corrected transport technique. Geophys. J. Int., 165: 943-956.460 WANG & ZHOU