ARTICLE

Diffraction analysis for the Sortym Formation using vertical seismic profiling data

ALEXER KLOKOV1 DAMIR IRKABAEV2 OSARENJ OGIESOBA1 KONSTANTIN SKACHEK3 NAIL MUNASYPOV4
Show Less
1 Bureau of Economic Geology, The University of Texas at Austin, University Station, Box X, Austin, TX 78713-8924, U.S.A.,
2 SPC Geotra, 3 Luganskaya St., Ufa, Republic of Bashkortostan, 450071 Russia.,
3 LUKOIL - West Siberia, 20 Pribaltyskaya St., Kogalym, Khanty-Mansi Autonomous District - Yugra, Tyumen region, 628486 Russia.,
4 Bashneftegeofizika, 13 Lenina St., Ufa, Republic of Bashkortostan, 450000 Russia.,
JSE 2014, 23(5), 463–480;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Klokov, A., Irkabaev, D., Ogiesoba, O., Skachek, K. and Munasypov, N., 2014. Diffraction analysis for the Sortym Formation using vertical seismic profiling data. Journal of Seismic Exploration, 23: 463-480. Seismic diffraction analysis may be a strong supplement for interpretation workflows. It allows characterization of small geologic features, which may not be detectable by conventional attribute analysis. Diffractions can play a significant role in fracture detection and characterization. In this work, we extract seismic diffractions from vertical seismic profiling (VSP) data acquired within the Sortym Formation in West Siberia. Seismic images of scattering objects were constructed for three components of the wavefield. We interpret the multicomponent diffraction images, comparing them with instantaneous frequency and instantaneous amplitude derived from conventional migrated data. The diffraction analysis allowed us to refine composition of the strata, to detect fracture clusters, and to predict the cluster orientation.

Keywords
diffraction imaging
borehole geophysics
VSP
multicomponent
shear waves
interpretation
fracture
shale
References
  1. Al-Dajani, A. and Fomel, S., 2010. Fractures detection using multi-azimuth diffractions focusing
  2. measure: Is it feasible? Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver, 29: 287.
  3. 480 KLOKOV, IRKABAEV, OGIESOBA, SKACHEK & MUNASYPOV
  4. Alonaizi, F., Pevzner, R., Bona, A. and Gurevich, B., 2013. 3D diffraction imaging of linear features and
  5. its application to seismic monitoring. Geophys. Prosp., 61: 1206-1217.
  6. Asgedom, E., Gelius, L.-J. and Tygel, M., 2013. 2D common-offset traveltime based diffraction
  7. enhancement and imaging. Geophys. Prosp., 61: 1178-1193.
  8. Bellefleur, G., Muller, C., Snyder, D. and Matthews, L., 2004. Downhole seismic imaging of a massive
  9. sulfide orebody with mode-converted waves, Halfmile Lake, New Brunswick, Canada. Geophysics,
  10. 69: 318-329.
  11. Benhama, A., Cliet, C. and Dubesset, M., 1988. Study and applications of spatial directional filtering in
  12. three-component recordings. Geophys. Prosp., 36: 591-613.
  13. Berkovitch, A., Belfer, I., Hassin, Y. and Landa, E., 2009. Diffraction imaging by multifocusing.
  14. Geophysics, 74: WCA75-WCA81.
  15. Biondi, B.L., 2006. 3D Seismic Imaging. SEG, Tulsa, OK, 224 pp.
  16. Burnett, W. and Fomel, S., 2011. Diffraction imaging using 3D azimuthally-anisotropic velocity
  17. continuation. Extended Abstr., 73rd EAGE Conf., Vienna.
  18. Diallo, M., Kulesh, M., Holschneider, M. and Scherbaum, F., 2005. Instantaneous polarization attributes
  19. in time-frequency domain and wavefield separation. Geophys. Prosp., 53, 723-731.
  20. Gelius, L., Tygel, M., Takahata, A., Asgedom, E. and Serrano, J., 2013. High-resolution imaging of
  21. diffractions - A window-steered MUSIC approach. Geophysics, 78: $255-S264.
  22. Hardage, B.A., 2000. Vertical Seismic Profiling. Part I - Principles. Pergamon Press, New York.
  23. Hardage, B.A., Pendleton, V., Simmons, J., Stubbs, B. and Uszynski, B., 1998. 3-D instantaneous
  24. frequency used as a coherency/continuity parameter to interpret reservoir compartment boundaries
  25. across an area of complex turbidite deposition. Geophysics, 63: 1520-1531.
  26. Hobbs, R.W., Drummond, B.J. and Goleby, B.R., 2006. The effects of three-dimensional structure on
  27. two-dimensional images of crustal seismic sections and on the interpretation of shear zone
  28. morphology. Geophys. J. Internat., 164: 490-500.
  29. Humphries, M., 2009. Locating VSP diffracted arrivals using a microseismic approach. Expanded Abstr.,
  30. 79th Ann. Internat. SEG Mtg., Houston: 4184-4188.
  31. Humphries, M., 2010. Orient VSP receivers using diffracted energy. Extended Abstr., 72nd EAGE Conf.,
  32. Barcelona.
  33. Klem-Musatov, K., 1994. Theory of Seismic Diffractions. SEG, Tulsa, OK, 410 pp.
  34. Klokov, A. and Fomel, S., 2012. Separation and imaging of seismic diffractions using migrated dip-angle
  35. gathers. Geophysics, 77: $131-S143.
  36. Koren, Z. and Ravve, I., 2011. Full-azimuth subsurface angle domain wavefield decomposition and
  37. imaging. Part I: Directional and reflection image gathers. Geophysics, 76: S1-S13.
  38. Kozlov, E., Barasky, N., Korolev, E., Antonenko, A. and Koshchuk, E., 2004. Imaging scattering objects
  39. masked by specular reflections. Expanded Abstr., 74th Ann. Internat. SEG Mtg., Denver, 23:
  40. 1131-1134.
  41. Lensky, V. and Akhtyamov, R., 2012. Fracture detection and characterization using offset vertical seismic
  42. profiling data. Karotazhnik (in Russian), 213: 83-91.
  43. Liu, E., Crampin, S. and Hudson, J., 1997. Diffraction of seismic waves by cracks with application to
  44. hydraulic fracturing. Geophysics, 62: 253-265.
  45. Meadows, M. and Winterstein, D., 1994. Seismic detection of a hydraulic fracture from shearwave VSP
  46. data at Lost Hills Field, California. Geophysics, 59: 11-26.
  47. Morozov, I. and Smithson, S., 1996. Instantaneous polarization attributes and directional filtering.
  48. Geophysics, 61: 872-881.
  49. Moser, T.J., Petersen, S. and Landa, E., 2000. Diffractivity analysis of VSP data. Expanded Abstr., 70th
  50. Ann. Internat. SEG Mtg., Calgary, Alberta: 758-761.
  51. Nikitchenko, A., Kiyashchenko, D., Kashtan, B. and Troyan, V., 2011. Diffraction imaging with cross-well
  52. seismic data. Extended Abstr., 73nd EAGE Conf., Vienna.
  53. Nikitchenko, A., Kiyashchenko, D., Kiselev, Y. and Kashtan, B., 2008. Imaging of scattering objects with
  54. VSP data - cross-correlation stacking and NMO enhancement. Extended Abstr., 70th EAGE Conf.,
  55. Rome.
  56. Sturzu, I., Popovici, A.M. and Moser, T.J., 2014. Diffraction imaging using specularity gathers. J. Seismic
  57. Explor. , 23, 1-18.
  58. Tsingas, C., Marhfoul, B.E., Satti, S. and Dajani, A., 2011. Diffraction imaging as an interpretation tool.
  59. First Break, 29: 57-61.
  60. Zhang, J. and Zhang, J., 2014. Diffraction imaging using shot and opening-angle gathers: A prestack time
  61. migration approach. Geophysics, 79: $23-S33.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing