Cite this article
1
Download
44
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Interferometric imaging by cross-correlation in surface seismic profile with double Green’s function

CHANG LIU1,2* YINGMING QU1,2 WEIJIE ZHAO3 SHENGHAN ZENG4 TINGYU YANG4 ZHENCHUN LI1,2
Show Less
1 School of Geosciences, China University of Petroleum, Qingdao, 266580, P.R. China.,
2 Key Laboratory of Deep Oil and Gas, Qingdao, 266580, P.R. China.,
3 Key Laboratory of Microbial Enhanced Oil Recovery, SINOPEC, Dongying, 257000, P.R. China.,
4 Shengli Branch of Sinopec Petroleum Engineering Geophysics Co., Ltd., Dongying, 257000, China.,
JSE 2023, 32(3), 243–256;
Submitted: 20 January 2023 | Accepted: 25 April 2023 | Published: 1 June 2023
© 2023 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Liu, C., Qu, Y.M., Zhao, W.J., Zeng, S.H., Yang, T.Y. and Li, Z.C., 2023. Interferometric imaging by cross-correlation in surface seismic profile with double Green's function. Journal of Seismic Exploration, 32: 243-256. Interferometric imaging aims to revise Green’s function for the consequences of acquisition geometry far from the geologic target bodies. That comprises the influences of an irregular acquisition geometry and of complex geological bodies in the overburden such as salt body with very high velocity. The sources can be relocate to positions where receivers are by seismic interferometric technique and vice versa. It is often used in transform data between vertical seismic profile (VSP) and single well profile (SWP), surface seismic profile (SSP) and single well profile. In most cases, no receivers are available at the underground medium, however the propagation of seismic waves in vertical seismic profile can be simulated by finite-difference. By correlating the simulated VSP Green’s function with surface seismic data, one can take the acquisition geometry from the surface closer to subsurface datum. The traditional interferometric imaging in surface seismic profile use one kind of VSP Green’s function so it only can handle simple model. To overcome this problem, double VSP Green's function interferometric imaging (DGFID is presented, which can handle complex model. Our numerical examples demonstrate that DGFII works perfectly not only in a homogeneous overburden, but also in a hetergeneous overburden.

Keywords
interferometric imaging
cross-correlation
surface seismic profile
hetergeneous overburden
References
  1. Aldawood, A., Hoteit, L, Turkiyyah, G. and Alkhalifah, T., 2015. A study on the effectof least-squares datuming on VSP multiple imaging: a rapidly evolving technology.
  2. Extended Abstr., 77th EAGE Conf., Madrid. doi: 10.3997/2214-4609.201413577
  3. Barrera, P., Schleicher, D.F.J. and Brackenhoff, J., 2021. Interferometric redatuming bydeconvolution and correlation-based focusing. Geophysics, 86(1), Q1-Q13.doi: 10.1190/geo2019-0208.1
  4. Barrera, P., Schleicher, D.F.J. and van der Neut, J., 2017. Limitations of correlation-based redatuming methods. J. Geophys. Engineer., 14: 1582-1598.doi: 10.1088/1742-2140/aa83cb
  5. Baysal, E., D. D. Kosloff, J. W. C. Sherwood, 1983, Reverse time migration: Geophysics,48, 1514-1524, doi: 10.1190/1.1441434
  6. Berryhill, J.R., 1979. Wave-equation datuming. Geophysics, 44: 1329-1344.doi: 10.1190/1.1441010
  7. Berryhill, J.R., 1984. Wave equation datuming before stack. Geophysics, 49(11),2064-2067, doi: 10.1190/1.1441620
  8. Beylkin, G., 1985. Imaging of discontinuities in the inverse scattering problem byinversion of a causal generalized Radon transform: J. Math. Phys, 26: 99-108.doi: 10.1063/1.526755
  9. Biondi, B., Glapp, R.R., Prucha, M. and Sava, P., 2002. 3D prestack waveequationimaging: A rapidly evolving technology. Extended Abstr., 64th EAGE Conf.,Florence.
  10. Chang, W. and McMechan, G.A., 1986. Reverse-time migration of offset verticalseismic profiling data using the excitation-time imaging condition. Geophysics, 51:67-84. doi :10.1190/1.1442041
  11. Chang, W. and McMechan, G.A, 1990. 3D acoustic prestack reverse-time migration.
  12. Geophys. Prosp., 38: 737-755. doi: 10.1111/).1365-2478.1990.tb 01872.x
  13. Claerbout, J.F., 1985. Imaging the Earth’s Interior. Blackwell Scientific Publishers,Oxford.
  14. Claerbout, J.F., 1968. Synthesis of a layered medium from its acoustic transmissionresponse. Geophysics, 33: 264-269. doi: 10.1190/1.1439927
  15. Curtis, A. and Halliday, D., 2010. Source-receiver wave field interferometry. Phys. Rev,81: 046601. doi: 10.1103/PhysRevE.8 1.046601
  16. Dong, S., Xiao, X., Luo, Y. and Schuster, G., 2007. 3D target-oriented reverse timedatuming. Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio, 26:2442-2445.
  17. Esmersoy, C. and Oristaglio, M., 1988. Reverse-time wave-field extrapolation, imaging,and inversion. Geophysics, 53: 920-931. doi: 10.1190/1.1442529
  18. Gray, S. and Bleistein, N., 2009. True-amplitude Gaussian-beam migration. Geophysics74(2): S11-S23. doi: 10.1190/1.3052116
  19. Guo, Q. and Alkhalifah, T., 2019. Datum-based waveform inversion using asubsurface-scattering imaging condition. Geophysics, 84(4): S251-S266.doi: 10.1190/GEO2018-0615.1
  20. Guo, Q., and T. Alkhalifah, 2020, Target-oriented waveform redatuming andhigh-resolution inversion: Role of the overburden: Geophysics, 85(6), R525-R536,doi: 10.1190/GEO2019-0640.1
  21. Hill, N., 1990. Gaussian beam migration. Geophysics, 55: 1416-1428.doi: 10.1190/1.1442788van der Neut, J... Ravasi, M., Liu, Y. and Vasconcelos, I., 2017. Target-enclosedseismic imaging. Geophysics, 82(6), Q53-Q66. doi: 10.1190/GEO2017-0166.1
  22. Liu, J.H., Draganov, D. and Ghose, R., 2022. Reducing near-surface artifacts from thecrossline direction by full-waveform inversion of interferometric surface waves:
  23. Geophysics, 87(6): R443-R452. doi: 10.1190/ge02021-0613.1
  24. Loewenthal, D., and I. Mufti, 1983, Reverse time migration in spatial frequency domain:Geophysics, 48, 627-635, doi: 10.1190/1.1441493
  25. Lu, R., Willis, M., Chman, X., Ajo-Franklin, J. and Tokséz, M.N., 2008, Redatumingthrough a salt canopy and target-oriented salt-flank imaging: Geophysics, 73,S63-71, doi: 10.1190/1.2890704
  26. Luo, Y., and G. Schuster, 2004, Bottom up target-oriented reverse-time datuming:
  27. CPS/SEG Int. Geophysical Conf., Expanded Abstracts, 1, 482-485.
  28. McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary values:
  29. Geophysical Prospecting, 31, 413-420, doi: 10.1111/j.1365-2478.1983. 5 tb01060.x
  30. Nakata, N., R. Snieder, and M. Behm, 2014, Body-wave interferometry using regionalearthquakes with multidimensional deconvolution after wavefield decomposition atfree surface: Geophys. J Int, 199, 1125-1137, doi: 10.1093/gji/ggu3 16
  31. Poliannikov, O. V., 2011, Retrieving reflections by source-receiver wavefieldinterferometry: Geophysics, 76(1), SA1-8, doi: 10.1190/1.3524241
  32. Ruigrok, E., and K. Wapenaar, 2012, Global-phase seismic interferometry unveils
  33. P-wave reflectivity below the Himalayas and Tibet: Geophysical research letters, 39,L11303, doi: 10.1029/2012GL051672
  34. Schuster, G. and Zhou, M., 2006. A theoretical overview of model-based andcorrelation-based redatuming methods. Geophysics, 71(4), S1103-SI10.doi: 10.1190/1.2208967
  35. Tao, Y. and Sen, M.K., 2013. On a plane-wave based crosscorrelation-type seismicinterferometry. Geophysics, 78(4), Q35-Q44. doi: 10.1190/GEO2012-0156.1
  36. Van der Neut, J., Thorbecke, J., Mehta, K., Slob, E. and Wapenaar, K., 2011.
  37. Controlled-source interferometric redatuming “by crosscorrelation andmulti-dimensional deconvolution in elastic media. Geophysics, 76(4), SA63-76.doi: 10.1190/1.3580633
  38. Wapenaar, C.P.A., Cox, H.L.H. and Berkhout, A.J., 1992. Elastic redatuming ofmulticomponent seismic data. Geophys. Prosp., 40: 465-482.doi: 10.1111/j.1365-2478.1992.tb00537.x
  39. Whitmore, N., 1983. Iterative depth migration by backward time propagation. Expanded
  40. Abstr., 53rd Ann. Internat. SEG Mtg., Las Vegas: 382-385.
  41. Xiao, X. and Schuster, G., 2006. Redatuming CDP data below salt with VSP Green’sfunction. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans:3511-3515.
  42. Zhao, Y. and Li, W.C., 2018. Wavelet-crosscorrelation-based interferometric redatumingin 4D seismic. Geophysics, 83(4): Q37-Q47. doi: 10.1190/GEO2017-0489.1
  43. Dong, S.Q., Luo, Y.,. Xiao, X., Chadvez-Pérez, S. and Schuster, G.T., 2009. Fast 3Dtarget-oriented reverse-time datuming. Geophysics, 74(6): WCA141-WCA151.doi: 10.1190/1.3261746
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing