Interferometric imaging by cross-correlation in surface seismic profile with double Green’s function

Liu, C., Qu, Y.M., Zhao, W.J., Zeng, S.H., Yang, T.Y. and Li, Z.C., 2023. Interferometric imaging by cross-correlation in surface seismic profile with double Green's function. Journal of Seismic Exploration, 32: 243-256. Interferometric imaging aims to revise Green’s function for the consequences of acquisition geometry far from the geologic target bodies. That comprises the influences of an irregular acquisition geometry and of complex geological bodies in the overburden such as salt body with very high velocity. The sources can be relocate to positions where receivers are by seismic interferometric technique and vice versa. It is often used in transform data between vertical seismic profile (VSP) and single well profile (SWP), surface seismic profile (SSP) and single well profile. In most cases, no receivers are available at the underground medium, however the propagation of seismic waves in vertical seismic profile can be simulated by finite-difference. By correlating the simulated VSP Green’s function with surface seismic data, one can take the acquisition geometry from the surface closer to subsurface datum. The traditional interferometric imaging in surface seismic profile use one kind of VSP Green’s function so it only can handle simple model. To overcome this problem, double VSP Green's function interferometric imaging (DGFID is presented, which can handle complex model. Our numerical examples demonstrate that DGFII works perfectly not only in a homogeneous overburden, but also in a hetergeneous overburden.
- Aldawood, A., Hoteit, L, Turkiyyah, G. and Alkhalifah, T., 2015. A study on the effectof least-squares datuming on VSP multiple imaging: a rapidly evolving technology.
- Extended Abstr., 77th EAGE Conf., Madrid. doi: 10.3997/2214-4609.201413577
- Barrera, P., Schleicher, D.F.J. and Brackenhoff, J., 2021. Interferometric redatuming bydeconvolution and correlation-based focusing. Geophysics, 86(1), Q1-Q13.doi: 10.1190/geo2019-0208.1
- Barrera, P., Schleicher, D.F.J. and van der Neut, J., 2017. Limitations of correlation-based redatuming methods. J. Geophys. Engineer., 14: 1582-1598.doi: 10.1088/1742-2140/aa83cb
- Baysal, E., D. D. Kosloff, J. W. C. Sherwood, 1983, Reverse time migration: Geophysics,48, 1514-1524, doi: 10.1190/1.1441434
- Berryhill, J.R., 1979. Wave-equation datuming. Geophysics, 44: 1329-1344.doi: 10.1190/1.1441010
- Berryhill, J.R., 1984. Wave equation datuming before stack. Geophysics, 49(11),2064-2067, doi: 10.1190/1.1441620
- Beylkin, G., 1985. Imaging of discontinuities in the inverse scattering problem byinversion of a causal generalized Radon transform: J. Math. Phys, 26: 99-108.doi: 10.1063/1.526755
- Biondi, B., Glapp, R.R., Prucha, M. and Sava, P., 2002. 3D prestack waveequationimaging: A rapidly evolving technology. Extended Abstr., 64th EAGE Conf.,Florence.
- Chang, W. and McMechan, G.A., 1986. Reverse-time migration of offset verticalseismic profiling data using the excitation-time imaging condition. Geophysics, 51:67-84. doi :10.1190/1.1442041
- Chang, W. and McMechan, G.A, 1990. 3D acoustic prestack reverse-time migration.
- Geophys. Prosp., 38: 737-755. doi: 10.1111/).1365-2478.1990.tb 01872.x
- Claerbout, J.F., 1985. Imaging the Earth’s Interior. Blackwell Scientific Publishers,Oxford.
- Claerbout, J.F., 1968. Synthesis of a layered medium from its acoustic transmissionresponse. Geophysics, 33: 264-269. doi: 10.1190/1.1439927
- Curtis, A. and Halliday, D., 2010. Source-receiver wave field interferometry. Phys. Rev,81: 046601. doi: 10.1103/PhysRevE.8 1.046601
- Dong, S., Xiao, X., Luo, Y. and Schuster, G., 2007. 3D target-oriented reverse timedatuming. Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio, 26:2442-2445.
- Esmersoy, C. and Oristaglio, M., 1988. Reverse-time wave-field extrapolation, imaging,and inversion. Geophysics, 53: 920-931. doi: 10.1190/1.1442529
- Gray, S. and Bleistein, N., 2009. True-amplitude Gaussian-beam migration. Geophysics74(2): S11-S23. doi: 10.1190/1.3052116
- Guo, Q. and Alkhalifah, T., 2019. Datum-based waveform inversion using asubsurface-scattering imaging condition. Geophysics, 84(4): S251-S266.doi: 10.1190/GEO2018-0615.1
- Guo, Q., and T. Alkhalifah, 2020, Target-oriented waveform redatuming andhigh-resolution inversion: Role of the overburden: Geophysics, 85(6), R525-R536,doi: 10.1190/GEO2019-0640.1
- Hill, N., 1990. Gaussian beam migration. Geophysics, 55: 1416-1428.doi: 10.1190/1.1442788van der Neut, J... Ravasi, M., Liu, Y. and Vasconcelos, I., 2017. Target-enclosedseismic imaging. Geophysics, 82(6), Q53-Q66. doi: 10.1190/GEO2017-0166.1
- Liu, J.H., Draganov, D. and Ghose, R., 2022. Reducing near-surface artifacts from thecrossline direction by full-waveform inversion of interferometric surface waves:
- Geophysics, 87(6): R443-R452. doi: 10.1190/ge02021-0613.1
- Loewenthal, D., and I. Mufti, 1983, Reverse time migration in spatial frequency domain:Geophysics, 48, 627-635, doi: 10.1190/1.1441493
- Lu, R., Willis, M., Chman, X., Ajo-Franklin, J. and Tokséz, M.N., 2008, Redatumingthrough a salt canopy and target-oriented salt-flank imaging: Geophysics, 73,S63-71, doi: 10.1190/1.2890704
- Luo, Y., and G. Schuster, 2004, Bottom up target-oriented reverse-time datuming:
- CPS/SEG Int. Geophysical Conf., Expanded Abstracts, 1, 482-485.
- McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary values:
- Geophysical Prospecting, 31, 413-420, doi: 10.1111/j.1365-2478.1983. 5 tb01060.x
- Nakata, N., R. Snieder, and M. Behm, 2014, Body-wave interferometry using regionalearthquakes with multidimensional deconvolution after wavefield decomposition atfree surface: Geophys. J Int, 199, 1125-1137, doi: 10.1093/gji/ggu3 16
- Poliannikov, O. V., 2011, Retrieving reflections by source-receiver wavefieldinterferometry: Geophysics, 76(1), SA1-8, doi: 10.1190/1.3524241
- Ruigrok, E., and K. Wapenaar, 2012, Global-phase seismic interferometry unveils
- P-wave reflectivity below the Himalayas and Tibet: Geophysical research letters, 39,L11303, doi: 10.1029/2012GL051672
- Schuster, G. and Zhou, M., 2006. A theoretical overview of model-based andcorrelation-based redatuming methods. Geophysics, 71(4), S1103-SI10.doi: 10.1190/1.2208967
- Tao, Y. and Sen, M.K., 2013. On a plane-wave based crosscorrelation-type seismicinterferometry. Geophysics, 78(4), Q35-Q44. doi: 10.1190/GEO2012-0156.1
- Van der Neut, J., Thorbecke, J., Mehta, K., Slob, E. and Wapenaar, K., 2011.
- Controlled-source interferometric redatuming “by crosscorrelation andmulti-dimensional deconvolution in elastic media. Geophysics, 76(4), SA63-76.doi: 10.1190/1.3580633
- Wapenaar, C.P.A., Cox, H.L.H. and Berkhout, A.J., 1992. Elastic redatuming ofmulticomponent seismic data. Geophys. Prosp., 40: 465-482.doi: 10.1111/j.1365-2478.1992.tb00537.x
- Whitmore, N., 1983. Iterative depth migration by backward time propagation. Expanded
- Abstr., 53rd Ann. Internat. SEG Mtg., Las Vegas: 382-385.
- Xiao, X. and Schuster, G., 2006. Redatuming CDP data below salt with VSP Green’sfunction. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans:3511-3515.
- Zhao, Y. and Li, W.C., 2018. Wavelet-crosscorrelation-based interferometric redatumingin 4D seismic. Geophysics, 83(4): Q37-Q47. doi: 10.1190/GEO2017-0489.1
- Dong, S.Q., Luo, Y.,. Xiao, X., Chadvez-Pérez, S. and Schuster, G.T., 2009. Fast 3Dtarget-oriented reverse-time datuming. Geophysics, 74(6): WCA141-WCA151.doi: 10.1190/1.3261746