Cite this article
1
Download
6
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Interferometric imaging by cross-correlation in surface seismic profile with double Green’s function

CHANG LIU1,2* YINGMING QU1,2 WEIJIE ZHAO3 SHENGHAN ZENG4 TINGYU YANG4 ZHENCHUN LI1,2
Show Less
1 School of Geosciences, China University of Petroleum, Qingdao, 266580, P.R. China.,
2 Key Laboratory of Deep Oil and Gas, Qingdao, 266580, P.R. China.,
3 Key Laboratory of Microbial Enhanced Oil Recovery, SINOPEC, Dongying, 257000, P.R. China.,
4 Shengli Branch of Sinopec Petroleum Engineering Geophysics Co., Ltd., Dongying, 257000, China.,
JSE 2023, 32(3), 243–256;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Liu, C., Qu, Y.M., Zhao, W.J., Zeng, S.H., Yang, T.Y. and Li, Z.C., 2023. Interferometric imaging by cross-correlation in surface seismic profile with double Green's function. Journal of Seismic Exploration, 32: 243-256. Interferometric imaging aims to revise Green’s function for the consequences of acquisition geometry far from the geologic target bodies. That comprises the influences of an irregular acquisition geometry and of complex geological bodies in the overburden such as salt body with very high velocity. The sources can be relocate to positions where receivers are by seismic interferometric technique and vice versa. It is often used in transform data between vertical seismic profile (VSP) and single well profile (SWP), surface seismic profile (SSP) and single well profile. In most cases, no receivers are available at the underground medium, however the propagation of seismic waves in vertical seismic profile can be simulated by finite-difference. By correlating the simulated VSP Green’s function with surface seismic data, one can take the acquisition geometry from the surface closer to subsurface datum. The traditional interferometric imaging in surface seismic profile use one kind of VSP Green’s function so it only can handle simple model. To overcome this problem, double VSP Green's function interferometric imaging (DGFID is presented, which can handle complex model. Our numerical examples demonstrate that DGFII works perfectly not only in a homogeneous overburden, but also in a hetergeneous overburden.

Keywords
interferometric imaging
cross-correlation
surface seismic profile
hetergeneous overburden
References
  1. Aldawood, A., Hoteit, L, Turkiyyah, G. and Alkhalifah, T., 2015. A study on the effect
  2. of least-squares datuming on VSP multiple imaging: a rapidly evolving technology.
  3. Extended Abstr., 77th EAGE Conf., Madrid. doi: 10.3997/2214-4609.201413577
  4. Barrera, P., Schleicher, D.F.J. and Brackenhoff, J., 2021. Interferometric redatuming by
  5. deconvolution and correlation-based focusing. Geophysics, 86(1), Q1-Q13.
  6. doi: 10.1190/geo2019-0208.1
  7. Barrera, P., Schleicher, D.F.J. and van der Neut, J., 2017. Limitations of correlation-
  8. based redatuming methods. J. Geophys. Engineer., 14: 1582-1598.
  9. doi: 10.1088/1742-2140/aa83cb
  10. Baysal, E., D. D. Kosloff, J. W. C. Sherwood, 1983, Reverse time migration: Geophysics,
  11. 48, 1514-1524, doi: 10.1190/1.1441434
  12. Berryhill, J.R., 1979. Wave-equation datuming. Geophysics, 44: 1329-1344.
  13. doi: 10.1190/1.1441010
  14. Berryhill, J.R., 1984. Wave equation datuming before stack. Geophysics, 49(11),
  15. 2064-2067, doi: 10.1190/1.1441620
  16. Beylkin, G., 1985. Imaging of discontinuities in the inverse scattering problem by
  17. inversion of a causal generalized Radon transform: J. Math. Phys, 26: 99-108.
  18. doi: 10.1063/1.526755
  19. Biondi, B., Glapp, R.R., Prucha, M. and Sava, P., 2002. 3D prestack waveequation
  20. imaging: A rapidly evolving technology. Extended Abstr., 64th EAGE Conf.,
  21. Florence.
  22. Chang, W. and McMechan, G.A., 1986. Reverse-time migration of offset vertical
  23. seismic profiling data using the excitation-time imaging condition. Geophysics, 51:
  24. 67-84. doi :10.1190/1.1442041
  25. Chang, W. and McMechan, G.A, 1990. 3D acoustic prestack reverse-time migration.
  26. Geophys. Prosp., 38: 737-755. doi: 10.1111/).1365-2478.1990.tb 01872.x
  27. Claerbout, J.F., 1985. Imaging the Earth’s Interior. Blackwell Scientific Publishers,
  28. Oxford.
  29. Claerbout, J.F., 1968. Synthesis of a layered medium from its acoustic transmission
  30. response. Geophysics, 33: 264-269. doi: 10.1190/1.1439927
  31. Curtis, A. and Halliday, D., 2010. Source-receiver wave field interferometry. Phys. Rev,
  32. 81: 046601. doi: 10.1103/PhysRevE.8 1.046601
  33. Dong, S., Xiao, X., Luo, Y. and Schuster, G., 2007. 3D target-oriented reverse time
  34. datuming. Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio, 26:
  35. 2442-2445.
  36. Esmersoy, C. and Oristaglio, M., 1988. Reverse-time wave-field extrapolation, imaging,
  37. and inversion. Geophysics, 53: 920-931. doi: 10.1190/1.1442529
  38. Gray, S. and Bleistein, N., 2009. True-amplitude Gaussian-beam migration. Geophysics
  39. 74(2): S11-S23. doi: 10.1190/1.3052116
  40. Guo, Q. and Alkhalifah, T., 2019. Datum-based waveform inversion using a
  41. subsurface-scattering imaging condition. Geophysics, 84(4): S251-S266.
  42. doi: 10.1190/GEO2018-0615.1
  43. Guo, Q., and T. Alkhalifah, 2020, Target-oriented waveform redatuming and
  44. high-resolution inversion: Role of the overburden: Geophysics, 85(6), R525-R536,
  45. doi: 10.1190/GEO2019-0640.1
  46. Hill, N., 1990. Gaussian beam migration. Geophysics, 55: 1416-1428.
  47. doi: 10.1190/1.1442788
  48. van der Neut, J... Ravasi, M., Liu, Y. and Vasconcelos, I., 2017. Target-enclosed
  49. seismic imaging. Geophysics, 82(6), Q53-Q66. doi: 10.1190/GEO2017-0166.1
  50. Liu, J.H., Draganov, D. and Ghose, R., 2022. Reducing near-surface artifacts from the
  51. crossline direction by full-waveform inversion of interferometric surface waves:
  52. Geophysics, 87(6): R443-R452. doi: 10.1190/ge02021-0613.1
  53. Loewenthal, D., and I. Mufti, 1983, Reverse time migration in spatial frequency domain:
  54. Geophysics, 48, 627-635, doi: 10.1190/1.1441493
  55. Lu, R., Willis, M., Chman, X., Ajo-Franklin, J. and Tokséz, M.N., 2008, Redatuming
  56. through a salt canopy and target-oriented salt-flank imaging: Geophysics, 73,
  57. S63-71, doi: 10.1190/1.2890704
  58. Luo, Y., and G. Schuster, 2004, Bottom up target-oriented reverse-time datuming:
  59. CPS/SEG Int. Geophysical Conf., Expanded Abstracts, 1, 482-485.
  60. McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary values:
  61. Geophysical Prospecting, 31, 413-420, doi: 10.1111/j.1365-2478.1983. 5 tb01060.x
  62. Nakata, N., R. Snieder, and M. Behm, 2014, Body-wave interferometry using regional
  63. earthquakes with multidimensional deconvolution after wavefield decomposition at
  64. free surface: Geophys. J Int, 199, 1125-1137, doi: 10.1093/gji/ggu3 16
  65. Poliannikov, O. V., 2011, Retrieving reflections by source-receiver wavefield
  66. interferometry: Geophysics, 76(1), SA1-8, doi: 10.1190/1.3524241
  67. Ruigrok, E., and K. Wapenaar, 2012, Global-phase seismic interferometry unveils
  68. P-wave reflectivity below the Himalayas and Tibet: Geophysical research letters, 39,
  69. L11303, doi: 10.1029/2012GL051672
  70. Schuster, G. and Zhou, M., 2006. A theoretical overview of model-based and
  71. correlation-based redatuming methods. Geophysics, 71(4), S1103-SI10.
  72. doi: 10.1190/1.2208967
  73. Tao, Y. and Sen, M.K., 2013. On a plane-wave based crosscorrelation-type seismic
  74. interferometry. Geophysics, 78(4), Q35-Q44. doi: 10.1190/GEO2012-0156.1
  75. Van der Neut, J., Thorbecke, J., Mehta, K., Slob, E. and Wapenaar, K., 2011.
  76. Controlled-source interferometric redatuming “by crosscorrelation and
  77. multi-dimensional deconvolution in elastic media. Geophysics, 76(4), SA63-76.
  78. doi: 10.1190/1.3580633
  79. Wapenaar, C.P.A., Cox, H.L.H. and Berkhout, A.J., 1992. Elastic redatuming of
  80. multicomponent seismic data. Geophys. Prosp., 40: 465-482.
  81. doi: 10.1111/j.1365-2478.1992.tb00537.x
  82. Whitmore, N., 1983. Iterative depth migration by backward time propagation. Expanded
  83. Abstr., 53rd Ann. Internat. SEG Mtg., Las Vegas: 382-385.
  84. Xiao, X. and Schuster, G., 2006. Redatuming CDP data below salt with VSP Green’s
  85. function. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans:
  86. 3511-3515.
  87. Zhao, Y. and Li, W.C., 2018. Wavelet-crosscorrelation-based interferometric redatuming
  88. in 4D seismic. Geophysics, 83(4): Q37-Q47. doi: 10.1190/GEO2017-0489.1
  89. Dong, S.Q., Luo, Y.,. Xiao, X., Chadvez-Pérez, S. and Schuster, G.T., 2009. Fast 3D
  90. target-oriented reverse-time datuming. Geophysics, 74(6): WCA141-WCA151.
  91. doi: 10.1190/1.3261746
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing