Physics-guided unsupervised deep-learning seismic inversion with uncertainty quantification

Zhang, Y., Singh, S., Thanoon, D., Devarakota, P., Jin, L. and Tsvankin, I., 2023. Physics-guided unsupervised deep-learning seismic inversion with uncertainty quantification. Journal of Seismic Exploration, 32: 257-270. Data-driven seismic inversion techniques are often used for estimation of subsurface properties. Employing the acoustic or elastic wave equation, inversion starts with approximate initial values of subsurface parameters, which are typically updated in iterative fashion. Here, we propose a two-stage unsupervised machine-learning (ML) methodology for efficient and accurate seismic impedance inversion. The first stage utilizes the generalization capability of convolutional neural networks (CNN) to produce realistic estimates of the acoustic impedance (AI), whereas the second stage incorporates physics information to generate synthetic data from the subsurface AI distribution. We also add Bayesian layers to the first stage of the network to evaluate the model errors. The proposed probabilistic approach to deep learning allows one to estimate the uncertainty of the inverted parameters, which enhances the interpretability of the model. We apply the algorithm to a poststack data set generated using the CGG Hampson- Russell software. After conducting network training with a sufficient number of data points, the network is applied to the rest of the data to estimate the model parameters. The developed approach has a significant advantage over more conventional ML strategies because it produces statistically justified uncertainty maps and eliminates the need to use labeled data for training.
- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
- Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
- G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J.,
- Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J.,
- Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Wanhoucke, V., Vasudevan,
- V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.and Zheng, X., 2016. TensorFlow: Large-scale machine learning on heterogeneoussystems. 12th USENIX Symposium Operating Systems, Design andImplementation: 265-283.
- Biswas, R., Sen, M.K. and Das, V. and Mukerji, T., 2019. Prestack and poststackinversion using a physics-guided convolutional neural network. Interpretation,7(3): SE161-SE174.
- Das, V., Pollack, A., Wollner, U. and Mukerji, T., 2018. Convolutional neural networkfor seismic impedance inversion. Expanded Abstr., 88th Ann. Internat. SEG Mtg.,Anaheim: 2071-2075.
- Di, H., Wang, Z. and AlRegib, G., 2018. Deep convolutional neural networks forseismic salt-body delineation. AAPG Ann. Conv., Salt Lake City.
- Graves, A., 2011. Practical variational inference for neural networks. Conf. AdvancesNeural Informat. Process. Syst.: 2348-2356.
- Guitton, A., 2011. A blocky regularization scheme for full waveform inversion.
- Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 2418-2422.
- Guitton, A., 2018. 3D convolutional neural networks for fault interpretation. ExtendedAbstr., 80th EAGE Conf., Copenhagen: 1 一 5.
- LaBonte, T., Martinez, C. and Roberts, S.A., 2020. We know where we don’t know: 3DBayesian CNNs for credible geometric uncertainty.arXiv Preprint, arXiv: 1910.10793.
- Loris, I., Douma, H., Nolet, G., Daubechies, I. and Regone, C., 2010. Nonlinearregularization techniques for seismic tomography. J. Computat. Phys., 229: 890-
- Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks forbiomedical image segmentation. arXiv Preprint, arXiv: 1505.04597.
- Russell, B.H., 1988. Introduction to Seismic Inversion Methods. SEG, Tulsa, OK.
- Sen, M.K., 2006. Seismic Inversion. SPE, Houston, TX.
- Sen, M.K. and Stoffa, P.L., 2013. Global Optimization Methods in GeophysicalInversion. Cambridge University Press, Cambridge.
- Sen, M.K. and Biswas, R., 2014. Choice of regularization weight in basis pursuitreflectivity inversion. J. Geophys. Engineer., 12: 70-79.
- Sen, M.K. and Biswas, R., 2017. Transdimensional seismic inversion using the reversiblejump Hamiltonian Monte Carlo algorithm. Geophysics, 82(3): R119-R134.
- Shi, Y., Wu, X. and Fomel, S., 2019. SaltSeg: Automatic 3D salt segmentation using adeep convolutional neural network. Interpretation, 7(3): SE113-SE122.
- Singh, S., Tsvankin, I. and Naeini, E.Z., 2021. Elastic FWI for orthorhombic media withlithologic constraints applied via machine learning: Geophysics, 86(4): R589-R602.
- Singh, S., Tsvankin, I. and Zabihi Naeini, E., 2022. Facies prediction with Bayesianinference: Application of supervised and semisupervised deep learning.
- Interpretation, 10(2): 279-290. doi:10.1190/int-2021-0104.1.
- Tikhonov, A. and Arsenin, V., 1977. Solution of Ill-posed Problems. Winston andSons, London: 1-258.
- Wen, Y., Vicol, P., Ba, J., Train, D. and Grosse, R., 2018. Flipout: Efficient pseudo-independent weight perturbations on mini-batches.arXiv Preprint, arXiv:1803.04386.
- Wu, X., Shi, Y., Fomel, S. and Liang, L., 2018. Convolutional neural networks for faultinterpretation in seismic images. Expanded Abstr., 88th Ann. Internat. SEG Mtg.,Anaheim: 1946-1950.