ARTICLE

Analysis of data-driven internal multiple prediction

ADRIANA CITLALI RAMÍREZ
Show Less
WesternGeco, 10001 Richmond Ave., Houston, TX 77042, U.S.A.,
JSE 2013, 22(2), 105–128;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ramirez, A.C., 2013. Analysis of data-driven internal multiple prediction. Journal of Seismic Exploration, 22: 105-128. The internal multiple prediction (IMP) algorithm analyzed in this paper is almost entirely data-driven, requiring a convolution and a crosscorrelation of the input data and information about the main internal multiple generators. The generators or generating horizons are the reflectors where the internal multiples’ energy was downward reflected. There are two common approaches to applying IMP: 1) The first is the layer-stripping approach in which internal multiples are predicted starting from the shallowest generator (top-down approach) and subtracted from the input data prior to attempting the prediction using the next horizon as generator. For each generator’s prediction, there is a subtraction. 2) The second approach, referred to as the non-top-down approach, predicts the multiples using one horizon at a time, but does not remove the predicted multiples from the input data prior to running the IMP algorithm with the next horizon. The first approach is in agreement with the theory behind this algorithm. The second approach still provides value; however, the same internal multiple can be predicted more than once by different horizons. These predictions have different amplitude information and opposite polarity with respect to each other. Hence, it is not always easy to deal with these internal multiple models when attempting to subtract them from the input data. I provide an analysis of the prediction of internal multiples using IMP with the different approaches.

Keywords
internal multiples
interbed multiples
adaptive subtraction
wave theory
monotonicity condition
seismic processing
References
  1. Araujo, F.V., Weglein, A.B. Carvalho, P.M. and Stolt, R.H., 1994. Inverse scattering series for
  2. multiple attenuation: An example with surface and internal multiples. Expanded Abstr., 64th
  3. Ann. Internat. SEG Mtg., Los Angeles, 13: 1039-1041.
  4. Baumstein, A., 2008. An upside-down approach to efficient surface-related and interbed multiple
  5. prediction. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas, 27: 2466-2470.
  6. Berkhout, A.J. and Verschuur, D.J., 1997. Estimation of multiple scattering by iterative inversion,
  7. Part I: Theoretical considerations. Geophysics, 62: 1586-1595.
  8. El-Emam, A., Moore, I. and Shabrawi, A., 2007. Interbed multiple prediction and attenuation: Case
  9. history from Kuwait. The Leading Edge, 26: 41-45.
  10. Hembd, J., Griffiths, M., Ting, C.-O. and Chazalnoel, N., 2010. Application of interbed multiple
  11. attenuation in the Santos Basin, Brazil. Expanded Abstr., 80th Ann. Internat. SEG Mtg.,
  12. Denver, 29, 3451-3455.
  13. Jakubowicz, H., 1998. Wave-equation prediction and removal of interbed multiples. Expanded
  14. Abstr., 68th Ann. Internat. SEG Mtg., New Orleans: 1527-1530.
  15. Jin, D., Yang, F., Zeng, J., Liu, Y. and Chang, X., 2009. A simplified method for 1.5D interbed
  16. multiples prediction based on inverse scattering series. Expanded Abstr., 79th Ann. Internat.
  17. SEG Mtg., Houston, 28: 3064-3067.
  18. Lira, J.E.M., Innanen, K.A., Weglein, A.B. and Ramirez, A.C., 2010. Correction of primary
  19. amplitudes for plane-wave transmission loss through an acoustic or absorptive overburden
  20. with the inverse scattering series internal multiple attenuation algorithm: an initial study and
  21. 1D numerical examples. J. Seismic Explor., 19: 103-120.
  22. Malcolm, A.E. and de Hoop, M.V., 2005. A method for inverse scattering based on the generalized
  23. Bremmer coupling series. Inverse Probl., 21: 1137-1167.
  24. Moore, I., 2001. Practical implementation of interbed multiple attenuation: Explor. Geophys., 32:
  25. 80-88.
  26. Neelamani, R., Baumstein, A. and Ross, W.S., 2008. Adaptive subtraction using complex curvelet
  27. transform. Extended Abstr., 70th EAGE Conf., Rome.
  28. Nita, B.G. and Weglein, A.B., 2004. Imaging with tau = 0 versus t = 0: implications for the
  29. inverse scattering internal multiple attenuation algorithm. Expanded Abstr., 74th Ann.
  30. Internat. SEG Mtg., Denver, 23: 1289-1292.
  31. 128 RAMIREZ
  32. Nita, B.G. and Weglein, A.B., 2007. Inverse-scattering internal multiple-attenuation algorithm: An
  33. analysis of the pseudodepth and time-monotonicity requirements. Expanded Abstr., 77th
  34. Ann. Internat. SEG Mtg., San Antonio, 26: 2461-2465.
  35. Nita, B.G. and Weglein, A.B., 2009, Pseudo-depth/intercept-time monotonicity requirements in the
  36. inverse scattering algorithm for predicting internal multiple reflections. Commun. Computat.
  37. Phys., 5: 163-182.
  38. Ramirez, A.C. and Weglein, A.B., 2005a. An inverse scattering internal multiple elimination
  39. method: Beyond attenuation, a new algorithm and initial tests. Expanded Abstr, 75th Ann.
  40. Internat. SEG Mtg., Houston, 24: 2115-2118.
  41. Ramirez, A.C. and Weglein, A.B., 2005b. Progressing the analysis of the phase and amplitude
  42. prediction properties of the inverse scattering internal multiple attenuation algorithm. J.
  43. Seismic Explor., 13: 283-301.
  44. Ramirez Pérez, A.C., 2007. I: Inverse Scattering Subseries for Removal of Internal Multiples and
  45. Depth Imaging Primaries; II: Green’s Theorem as the Foundation of Interferometry and
  46. Guiding New Practical Methods and Applications. Ph.D. thesis, University of Houston,
  47. Houston, TX.
  48. Ramirez-Pérez, A.C., Teague, A.G, Walz, M.A. and Wu, Z., 2011. Attenuating internal multiples
  49. from seismic data. U.S. Patent Application 592-25695-US, filed 2011.
  50. ten Kroode, F., 2002. Prediction of internal multiples. Wave Motion, 35: 315-338.
  51. Terenghi, P., Dragoset, W.H. and Moore, I., 2010. Interbed multiple prediction: US Patent
  52. Application Publication, N 20100074052 A1.
  53. Verschuur, D.J. and Berkhout, A.J., 1996. Removal of interbed multiples. Extended Abstr., 58th
  54. EAGE Conf., Amsterdam.
  55. Verschuur, D.J., Berkhout, A.J., Matson, H., Weglein, A.B. and Young, C.Y., 1998. Comparing
  56. the interface and point scatterer methods for attenuating internal multiples: A study with
  57. synthetic data, Part I. Expanded Abstr., 68th Ann. Internat. SEG Mtg., New Orleans, 17:
  58. 1519-1522.
  59. Weglein, A.B., Aratjo Gasparotto, F., Carvalho, P. and Stolt, R.H., 1997. An inverse-scattering
  60. series method for attenuating multiples in seismic reflection data. Geophysics, 62: 1975-
  61. Weglein, A.B. and Matson, K., 1998. Inverse scattering internal multiple attenuation: an analytic
  62. example and subevent interpretation. Proc. SPIE, Mathemat. Meth. Geophys. Imaging V.
  63. Siamak Hassanzadeh (Ed.), SPIE Homepage, 3453: 108-117.
  64. Weglein, A.B. and Dragoset, W.H., 2005. Multiple Attenuation. SEG, Tulsa, OK.
  65. Zhang, H. and Shaw, S., 2010. 1D analytical analysis of higher order internal multiples predicted
  66. via the inverse scattering series based algorithm. Expanded Abstr., 80th Ann. Internat. SEG
  67. Mtg., Denver, 29: 3493-3498.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing