ARTICLE

Analysis of data-driven internal multiple prediction

ADRIANA CITLALI RAMÍREZ
Show Less
WesternGeco, 10001 Richmond Ave., Houston, TX 77042, U.S.A.,
JSE 2013, 22(2), 105–128;
Submitted: 25 July 2012 | Accepted: 10 February 2013 | Published: 1 May 2013
© 2013 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ramirez, A.C., 2013. Analysis of data-driven internal multiple prediction. Journal of Seismic Exploration, 22: 105-128. The internal multiple prediction (IMP) algorithm analyzed in this paper is almost entirely data-driven, requiring a convolution and a crosscorrelation of the input data and information about the main internal multiple generators. The generators or generating horizons are the reflectors where the internal multiples’ energy was downward reflected. There are two common approaches to applying IMP: 1) The first is the layer-stripping approach in which internal multiples are predicted starting from the shallowest generator (top-down approach) and subtracted from the input data prior to attempting the prediction using the next horizon as generator. For each generator’s prediction, there is a subtraction. 2) The second approach, referred to as the non-top-down approach, predicts the multiples using one horizon at a time, but does not remove the predicted multiples from the input data prior to running the IMP algorithm with the next horizon. The first approach is in agreement with the theory behind this algorithm. The second approach still provides value; however, the same internal multiple can be predicted more than once by different horizons. These predictions have different amplitude information and opposite polarity with respect to each other. Hence, it is not always easy to deal with these internal multiple models when attempting to subtract them from the input data. I provide an analysis of the prediction of internal multiples using IMP with the different approaches.

Keywords
internal multiples
interbed multiples
adaptive subtraction
wave theory
monotonicity condition
seismic processing
References
  1. Araujo, F.V., Weglein, A.B. Carvalho, P.M. and Stolt, R.H., 1994. Inverse scattering series formultiple attenuation: An example with surface and internal multiples. Expanded Abstr., 64th
  2. Ann. Internat. SEG Mtg., Los Angeles, 13: 1039-1041.
  3. Baumstein, A., 2008. An upside-down approach to efficient surface-related and interbed multipleprediction. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas, 27: 2466-2470.
  4. Berkhout, A.J. and Verschuur, D.J., 1997. Estimation of multiple scattering by iterative inversion,
  5. Part I: Theoretical considerations. Geophysics, 62: 1586-1595.
  6. El-Emam, A., Moore, I. and Shabrawi, A., 2007. Interbed multiple prediction and attenuation: Casehistory from Kuwait. The Leading Edge, 26: 41-45.
  7. Hembd, J., Griffiths, M., Ting, C.-O. and Chazalnoel, N., 2010. Application of interbed multipleattenuation in the Santos Basin, Brazil. Expanded Abstr., 80th Ann. Internat. SEG Mtg.,Denver, 29, 3451-3455.
  8. Jakubowicz, H., 1998. Wave-equation prediction and removal of interbed multiples. Expanded
  9. Abstr., 68th Ann. Internat. SEG Mtg., New Orleans: 1527-1530.
  10. Jin, D., Yang, F., Zeng, J., Liu, Y. and Chang, X., 2009. A simplified method for 1.5D interbedmultiples prediction based on inverse scattering series. Expanded Abstr., 79th Ann. Internat.SEG Mtg., Houston, 28: 3064-3067.
  11. Lira, J.E.M., Innanen, K.A., Weglein, A.B. and Ramirez, A.C., 2010. Correction of primaryamplitudes for plane-wave transmission loss through an acoustic or absorptive overburdenwith the inverse scattering series internal multiple attenuation algorithm: an initial study and1D numerical examples. J. Seismic Explor., 19: 103-120.
  12. Malcolm, A.E. and de Hoop, M.V., 2005. A method for inverse scattering based on the generalized
  13. Bremmer coupling series. Inverse Probl., 21: 1137-1167.
  14. Moore, I., 2001. Practical implementation of interbed multiple attenuation: Explor. Geophys., 32:80-88.
  15. Neelamani, R., Baumstein, A. and Ross, W.S., 2008. Adaptive subtraction using complex curvelettransform. Extended Abstr., 70th EAGE Conf., Rome.
  16. Nita, B.G. and Weglein, A.B., 2004. Imaging with tau = 0 versus t = 0: implications for theinverse scattering internal multiple attenuation algorithm. Expanded Abstr., 74th Ann.Internat. SEG Mtg., Denver, 23: 1289-1292.128 RAMIREZ
  17. Nita, B.G. and Weglein, A.B., 2007. Inverse-scattering internal multiple-attenuation algorithm: Ananalysis of the pseudodepth and time-monotonicity requirements. Expanded Abstr., 77th
  18. Ann. Internat. SEG Mtg., San Antonio, 26: 2461-2465.
  19. Nita, B.G. and Weglein, A.B., 2009, Pseudo-depth/intercept-time monotonicity requirements in theinverse scattering algorithm for predicting internal multiple reflections. Commun. Computat.Phys., 5: 163-182.
  20. Ramirez, A.C. and Weglein, A.B., 2005a. An inverse scattering internal multiple eliminationmethod: Beyond attenuation, a new algorithm and initial tests. Expanded Abstr, 75th Ann.Internat. SEG Mtg., Houston, 24: 2115-2118.
  21. Ramirez, A.C. and Weglein, A.B., 2005b. Progressing the analysis of the phase and amplitudeprediction properties of the inverse scattering internal multiple attenuation algorithm. J.Seismic Explor., 13: 283-301.
  22. Ramirez Pérez, A.C., 2007. I: Inverse Scattering Subseries for Removal of Internal Multiples and
  23. Depth Imaging Primaries; II: Green’s Theorem as the Foundation of Interferometry and
  24. Guiding New Practical Methods and Applications. Ph.D. thesis, University of Houston,Houston, TX.
  25. Ramirez-Pérez, A.C., Teague, A.G, Walz, M.A. and Wu, Z., 2011. Attenuating internal multiplesfrom seismic data. U.S. Patent Application 592-25695-US, filed 2011.ten Kroode, F., 2002. Prediction of internal multiples. Wave Motion, 35: 315-338.
  26. Terenghi, P., Dragoset, W.H. and Moore, I., 2010. Interbed multiple prediction: US PatentApplication Publication, N 20100074052 A1.
  27. Verschuur, D.J. and Berkhout, A.J., 1996. Removal of interbed multiples. Extended Abstr., 58thEAGE Conf., Amsterdam.
  28. Verschuur, D.J., Berkhout, A.J., Matson, H., Weglein, A.B. and Young, C.Y., 1998. Comparingthe interface and point scatterer methods for attenuating internal multiples: A study withsynthetic data, Part I. Expanded Abstr., 68th Ann. Internat. SEG Mtg., New Orleans, 17:1519-1522.
  29. Weglein, A.B., Aratjo Gasparotto, F., Carvalho, P. and Stolt, R.H., 1997. An inverse-scatteringseries method for attenuating multiples in seismic reflection data. Geophysics, 62: 1975-
  30. Weglein, A.B. and Matson, K., 1998. Inverse scattering internal multiple attenuation: an analyticexample and subevent interpretation. Proc. SPIE, Mathemat. Meth. Geophys. Imaging V.
  31. Siamak Hassanzadeh (Ed.), SPIE Homepage, 3453: 108-117.
  32. Weglein, A.B. and Dragoset, W.H., 2005. Multiple Attenuation. SEG, Tulsa, OK.
  33. Zhang, H. and Shaw, S., 2010. 1D analytical analysis of higher order internal multiples predictedvia the inverse scattering series based algorithm. Expanded Abstr., 80th Ann. Internat. SEGMtg., Denver, 29: 3493-3498.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing