High-order high-resolution Radon transform for AVO-preservation multiples attenuation

Xue, Y., Ma, J. and Chen, X., 2013. High-order high-resolution Radon transform for AVO-preservation multiples attenuation. Journal of Seismic Exploration, 22: 93-104. Multiple attenuation and primary energy preservation are important for seismic data processing. Sparse Radon transform can reduce smearing and separate primaries and multiples quite well. But when the primary amplitude varies abruptly, multiple attenuation by sparse Radon transform will be degraded, and the energy of primaries will be distorted. To remediate this problem, we propose a high-order high-resolution Radon transform. Radon transform only performs summation along linear, parabolic or hyperbolic events. Our method incorporates event summation with orthogonal polynomial transform, and meanwhile obtains the gradient and curvature of events. This information will improve resolution of Radon transform in situations where amplitudes vary abruptly with offsets. The high-order Radon transform takes advantages of Radon transform and orthogonal polynomial transform, which will attenuate multiples while preserving AVO information of seismic data. Synthetic data examples show that high-order Radon transform is successful in multiple attenuation and AVO preservation.
- Cary, P., 1998. The simplest discrete Radon transform. Expanded Abstr., 68th Ann. Internat. SEG
- Mtg., New Orleans: 1999-2002.
- Hampson, D., 1986. Inverse velocity stacking for multiple elimination. J. CSEG, 26: 44-55.
- Herrmann, P., Mojesky, T. and Magesan, .M., 1999. Amplitude preserving Radon demultiple.
- Beyond sampling and aperture limitations. Abstracts, Nation. Conv. CSEG: 73-74.
- Herrmann, P., Mojesky, T. and Magesan, M., 2000. De-aliased, high-resolution Radon transforms.
- Expanded Abstr., 70th Ann. Internat. SEG Mtg., Calgary, Alberta: 1953-1956.
- Johansen, T.A., Bruland, L. and Lutro, J., 1995. Tracking the amplitude versus offset by using
- orthogonal polynomials. Geophys. Prosp., 43: 245-261.
- Kabir, M.M.N. and Marfurt, K.J., 1999. Toward true amplitude multiple removal. The Leading
- Edge, 18: 66-73.
- 104 XUE, MA & CHEN
- Sacchi, M. and Ulrych, T.J,, 1995. High-resolution velocity gathers and offset space reconstruction.
- Geophysics, 60: 1169-1177.
- Schonewille, M., 2002. High-resolution transforms and amplitude preservation. Expanded Abstr.,
- 72th Ann. Internat. SEG Mtg., Salt Lake City: 2066-2069.
- Thorson, J.R. and Claerbout, J.F., 1985. Velocity-stack and slant-stack stochastic inversion.
- Geophysics, 50: 2727-2741.
- Trade, D., Ulrich, T.J. and Sacchi, M., 2003. The latest view of sparse Radon transform.
- Geophysics, 68: 386-399.
- Ursin, B. and Dahl, T., 1990. Least-square estimation of reflectivity polynomials. Expanded Abstr.,
- 60th Ann. Internat. SEG Mtg., San Francisco: 1069-1071.
- Wang, B., 2011. AVO-preserving sparse parabolic Radon transform. Extended Abstr., 73rd EAGE
- Conf., Vienna.
- Yilmaz, O., 1989. Velocity-stack processing. Geophys. Prosp., 37: 357-382.