ARTICLE

High-order high-resolution Radon transform for AVO-preservation multiples attenuation

YARU XUE JITAO MA XIAOHONG CHEN
Show Less
China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, Beijing, P. R. China. xueyaru@cup.edu.cn,
JSE 2013, 22(1), 93–104;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Xue, Y., Ma, J. and Chen, X., 2013. High-order high-resolution Radon transform for AVO-preservation multiples attenuation. Journal of Seismic Exploration, 22: 93-104. Multiple attenuation and primary energy preservation are important for seismic data processing. Sparse Radon transform can reduce smearing and separate primaries and multiples quite well. But when the primary amplitude varies abruptly, multiple attenuation by sparse Radon transform will be degraded, and the energy of primaries will be distorted. To remediate this problem, we propose a high-order high-resolution Radon transform. Radon transform only performs summation along linear, parabolic or hyperbolic events. Our method incorporates event summation with orthogonal polynomial transform, and meanwhile obtains the gradient and curvature of events. This information will improve resolution of Radon transform in situations where amplitudes vary abruptly with offsets. The high-order Radon transform takes advantages of Radon transform and orthogonal polynomial transform, which will attenuate multiples while preserving AVO information of seismic data. Synthetic data examples show that high-order Radon transform is successful in multiple attenuation and AVO preservation.

Keywords
sparse Radon transform
high-order Radon transform
AVO
orthogonal polynominal transform
multiple attenuation
References
  1. Cary, P., 1998. The simplest discrete Radon transform. Expanded Abstr., 68th Ann. Internat. SEG
  2. Mtg., New Orleans: 1999-2002.
  3. Hampson, D., 1986. Inverse velocity stacking for multiple elimination. J. CSEG, 26: 44-55.
  4. Herrmann, P., Mojesky, T. and Magesan, .M., 1999. Amplitude preserving Radon demultiple.
  5. Beyond sampling and aperture limitations. Abstracts, Nation. Conv. CSEG: 73-74.
  6. Herrmann, P., Mojesky, T. and Magesan, M., 2000. De-aliased, high-resolution Radon transforms.
  7. Expanded Abstr., 70th Ann. Internat. SEG Mtg., Calgary, Alberta: 1953-1956.
  8. Johansen, T.A., Bruland, L. and Lutro, J., 1995. Tracking the amplitude versus offset by using
  9. orthogonal polynomials. Geophys. Prosp., 43: 245-261.
  10. Kabir, M.M.N. and Marfurt, K.J., 1999. Toward true amplitude multiple removal. The Leading
  11. Edge, 18: 66-73.
  12. 104 XUE, MA & CHEN
  13. Sacchi, M. and Ulrych, T.J,, 1995. High-resolution velocity gathers and offset space reconstruction.
  14. Geophysics, 60: 1169-1177.
  15. Schonewille, M., 2002. High-resolution transforms and amplitude preservation. Expanded Abstr.,
  16. 72th Ann. Internat. SEG Mtg., Salt Lake City: 2066-2069.
  17. Thorson, J.R. and Claerbout, J.F., 1985. Velocity-stack and slant-stack stochastic inversion.
  18. Geophysics, 50: 2727-2741.
  19. Trade, D., Ulrich, T.J. and Sacchi, M., 2003. The latest view of sparse Radon transform.
  20. Geophysics, 68: 386-399.
  21. Ursin, B. and Dahl, T., 1990. Least-square estimation of reflectivity polynomials. Expanded Abstr.,
  22. 60th Ann. Internat. SEG Mtg., San Francisco: 1069-1071.
  23. Wang, B., 2011. AVO-preserving sparse parabolic Radon transform. Extended Abstr., 73rd EAGE
  24. Conf., Vienna.
  25. Yilmaz, O., 1989. Velocity-stack processing. Geophys. Prosp., 37: 357-382.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing