ARTICLE

Weak dispersion wave-field simulations: A predictor-corrector algorithm for solving acoustic and elastic wave equations

NIAN WANG1 DINGHUI YANG1 FAQI LIU2
Show Less
1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China. dhyang@math.tsinghua.edu.cn,
2 Hess Corporation, One Allen Center, Houston, Texas 77002, U.S.A. fliu@hess.com,
JSE 2012, 21(2), 125–152;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, N., Yang, D. and Liu, F., 2012. Weak dispersion wave-field simulations: A predictor-corrector algorithm for solving acoustic and elastic wave equations. Journal of Seismic Exploration, 21: 125-152. A new predictor-corrector algorithm (PCA) based on the implicit Runge-Kutta method is proposed to solve the acoustic and elastic wave equations. We transform the wave equation into a system of first-order partial differential equations (PDEs) with respect to time, convert the transformed wave equation into a semi-discrete ordinary differential equation (ODE) system by using the high-order interpolation method to approximate the spatial derivatives (Yang et al., 2003, 2007), and finally use the proposed PCA which is a time discretization method to solve the semi-discrete ODE system. We investigate the theoretical properties of the PCA such as its numerical convergence, stability criteria, and numerical dispersion for solving 1-D and 2-D scalar wave equations. The computational efficiency of the PCA in simulating acoustic wave fields is also investigated, and is compared with that of the staggered-grid method and the fourth-order Lax-Wendroff correction method (LWC). The effectiveness of the PCA is also demonstrated by its well matched waveforms to the analytic solution for modeling both acoustic and elastic models. Promising numerical simulation results indicate that the proposed PCA provides a useful method for the large-scale wave-field simulations because it can effectively suppress numerical dispersions even when coarse modeling grids are used or large velocity contrasts exist in geological models.

Keywords
predictor-corrector algorithm
numerical dispersion
wave field simulation
implicit Runge-Kutta method
References
  1. Aki, K. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman
  2. & Co., San Francisco.
  3. Alford, R.M., Kelly, K.R. and Boore, D.M., 1974. Accuracy of finite-difference modeling of the
  4. acoustic wave equation. Geophysics, 39: 834-842.
  5. Cockburn, B. and Shu, C.W., 1998. The Runge-Kutta discontinuous Galerkin method for
  6. conservation laws V: multidimensional systems. J. Computat. Phys., 141: 199-224.
  7. Cockburn, B. and Shu C.W., 1989. TVB Runge-Kutta local projection discontinuous Galerkin finite
  8. element method for scalar conservation laws II: general framework. Mathemat. Computat.,
  9. 52: 411-435.
  10. Dablain, M.A., 1986. The application of high-order differencing to the scalar wave equation.
  11. Geophysics, 51: 54-66.
  12. Dumbser, M. and Késer, M., 2006. An arbitrary high order discontinuous Galerkin method for
  13. elastic waves on unstructured meshes-II. The three-dimensional isotropic case. Geophys. J.
  14. Internat., 167: 316-336.
  15. Eriksson, K. and Johnson, C., 1991. Adaptive finite element methods for parabolic problems: A
  16. linear model problem. SIAM J. Numer. Anal., 28: 43-77.
  17. Fei, T. and Larner, K., 1995. Elimination of numerical dispersion in finite-difference modeling and
  18. migration by flux-corrected transport. Geophysics, 60: 1830-1842.
  19. Fornberg, B., 1990. High-order finite differences and pseudo-spectral method on staggered grids.
  20. SIAM J. Numer. Anal., 27: 904-918.
  21. Guan, Z. and Lu, J.F., 2006. Numerical methods. Tsinghua University Press, Beijing.
  22. Hairer, E., Norsett, S.P. and Wanner, G., 1993. Solving Ordinary Differential Equations I: Nonstiff
  23. Problems. Springer-Verlag, Berlin Heidelberg.
  24. Johnson, C., 1990. Adaptive finite element methods for diffusion and convection problem. Comput.
  25. Meth. Appl. Mechan. Engin., 82: 301-322.
  26. Késer, M. and Dumbser, M., 2006. An arbitrary high order discontinuous Galerkin method for
  27. elastic waves on unstructured meshes I: the two-dimensional isotropic case with external
  28. source terms. Geophys. J. Internat., 166: 855-877.
  29. Komatitsch, D. and Vilotte, J.P., 1998. The Spectral Element method: an efficient tool to simulate
  30. the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am., 88:
  31. 368-392.
  32. Komatitsch, D., Barnes, C. and Tromp, J., 2000. Simulation of anisotropic wave propagation based
  33. upon a spectral-element method. Geophysics, 65: 1251-1260.
  34. Konddoh, Y., Hosaka, Y. and Ishii, K., 1994. Kernel optimum nearly analytical discretization
  35. algorithm applied to parabolic and hyperbolic equations. Comput. Mathem. Appl., 27: 59-90.
  36. 148 WANG, YANG & LIU
  37. Kosloff, D. and Baysal, E., 1982. Forward modeling by a Fourier method. Geophysics, 47:
  38. 1402-1412.
  39. Lax, P.D. and Wendroff, B., 1964. Difference schemes for hyperbolic equations with high order
  40. of accuracy. Communic. Pure Appl. Mathemat., 17: 381-398.
  41. Lele, S.K., 1992. Compact finite difference scheme with spectral-like resolution. J. Computat.
  42. Phys., 103: 16-42.
  43. Levander, A., 1988. Fourth-order finite-difference P-SV seismograms. Geophysics, 53: 1425-1436.
  44. Luo, Y. and Schuster, G., 1990. Parsimonious staggered grid finite-differencing of the wave
  45. equation. Geophys. Res. Lett., 17: 155-158.
  46. Moczo, P., Kristek, J. and Halada. L., 2000. 3D fourth-order staggered-grid finite-difference
  47. schemes: stability and grid dispersion. Bull. Seismol. Soc. Am., 90: 587-603.
  48. Richtmeyer, R.D. and Morton, K.W., 1967. Difference Methods for Initial Value Problems.
  49. Interscience, New York.
  50. Sei, A. and Symes, W., 1994. Dispersion analysis of numerical wave propagation and its
  51. computational consequences. J. Scientif. Comput., 10: 1-27.
  52. Shu, C.W., 1988. Total-variation-diminishing time discretizations. SIAM J. Scientif. Statist.
  53. Comput., 9: 1073-1084.
  54. Shu, C.W. and Osher, S., 1988. Efficient implementation of essentially non-oscillatory shock
  55. capturing schemes. J. Computat. Phys., 77: 439-471.
  56. Takeuchi, N. and Geller, R.J., 2000. Optimally accurate second order time-domain finite difference
  57. scheme for computing synthetic seismograms in 2-D and 3-D media. Phys. Earth Planet.
  58. Inter., 119: 99-131.
  59. Turner, M.J., Clough, R.W., Martin, H.C. and Topp, L.J., 1956. Stiffness and deflection analysis
  60. of complex structures. J. Aeronaut. Sci., 23: 805-823.
  61. Virieux, J., 1984. SH-wave propagation in heterogeneous media: velocity stress finite-difference
  62. method. Geophysics, 49: 1933-1957.
  63. Virieux, J., 1986. P-SV wave propagation in heterogeneous medium: Velocity-stress finite-difference
  64. method. Geophysics, 51: 889-901.
  65. Wang, S.Q., Yang, D.H. and Yang, K.D., 2002. Compact finite difference scheme for elastic
  66. equations. J. Tsinghua Univ. Sci. Tech., 42: 1128-1131. (in Chinese)
  67. Whiteman, J.R., 1975. A Bibliography for Finite Elements. Academic Press, New York.
  68. Yang, D.H., Chen, S. and Li, J.Z., 2007. A Runge-Kutta method using high-order interpolation
  69. approximation for solving 2D acoustic and elastic wave equations. J. Seismic Explor., 16:
  70. 331-353.
  71. Yang., D.H., Liu, E. and Zhang, Z.J., 2008. Evaluation of the u-W finite element method in
  72. anisotropic porous media. J. Seismic Explor., 17: 273-299.
  73. Yang, D.H., Liu, E., Zhang, Z.J. and Teng, J., 2002. Finite-difference modeling in
  74. two-dimensional anisotropic media using a flux-corrected transport technique. Geophys. J.
  75. Internat., 148: 320-328.
  76. Yang, D.H., Peng, J.M., Lu, M. and Terlaky, T., 2006. Optimal nearly analytic discrete
  77. approximation to the scalar wave equation. Bull. Seismol. Soc. Am., 96: 1114-1130.
  78. Yang, D.H., Teng, J.W., Zhang, Z.J. and Liu, E., 2003. A nearly-analytic discrete method for
  79. acoustic and elastic wave equations in anisotropic media. Bull. Seismol. Soc. Am., 93:
  80. 882-890.
  81. Yang, D.H., Wang, N., Chen, S. and Song, G.J., 2009. An explicit method based on the implicit
  82. Runge-Kutta algorithm for solving the wave equations. Bull. Seismol. Soc. Am., 99:
  83. 3340-3354.
  84. Zahradnik, J., Moczo, P. and Hron, T., 1993. Testing four elastic finite-difference schemes for
  85. behavior at discontinuities. Bull. Seismol. Soc. Am., 83: 107-129.
  86. Zhang, Z.J., Wang, G.J. and Harris, J.M., 1999. Multi-component wave-field simulation in viscous
  87. extensively dilatancy anisotropic media. Phys. Earth Planet. Inter., 114: 25-38.
  88. Zheng, H.S., Zhang, Z.J. and Liu, E.R., 2006. Non-linear seismic wave propagation in anisotropic
  89. media using the flux-corrected transport technique. Geophys. J. Internat., 165: 943-956.
  90. WEAK DISPERSION WAVE-FIELD SIMULATION 149
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing