Weak dispersion wave-field simulations: A predictor-corrector algorithm for solving acoustic and elastic wave equations

Wang, N., Yang, D. and Liu, F., 2012. Weak dispersion wave-field simulations: A predictor-corrector algorithm for solving acoustic and elastic wave equations. Journal of Seismic Exploration, 21: 125-152. A new predictor-corrector algorithm (PCA) based on the implicit Runge-Kutta method is proposed to solve the acoustic and elastic wave equations. We transform the wave equation into a system of first-order partial differential equations (PDEs) with respect to time, convert the transformed wave equation into a semi-discrete ordinary differential equation (ODE) system by using the high-order interpolation method to approximate the spatial derivatives (Yang et al., 2003, 2007), and finally use the proposed PCA which is a time discretization method to solve the semi-discrete ODE system. We investigate the theoretical properties of the PCA such as its numerical convergence, stability criteria, and numerical dispersion for solving 1-D and 2-D scalar wave equations. The computational efficiency of the PCA in simulating acoustic wave fields is also investigated, and is compared with that of the staggered-grid method and the fourth-order Lax-Wendroff correction method (LWC). The effectiveness of the PCA is also demonstrated by its well matched waveforms to the analytic solution for modeling both acoustic and elastic models. Promising numerical simulation results indicate that the proposed PCA provides a useful method for the large-scale wave-field simulations because it can effectively suppress numerical dispersions even when coarse modeling grids are used or large velocity contrasts exist in geological models.
- Aki, K. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman& Co., San Francisco.
- Alford, R.M., Kelly, K.R. and Boore, D.M., 1974. Accuracy of finite-difference modeling of theacoustic wave equation. Geophysics, 39: 834-842.
- Cockburn, B. and Shu, C.W., 1998. The Runge-Kutta discontinuous Galerkin method forconservation laws V: multidimensional systems. J. Computat. Phys., 141: 199-224.
- Cockburn, B. and Shu C.W., 1989. TVB Runge-Kutta local projection discontinuous Galerkin finiteelement method for scalar conservation laws II: general framework. Mathemat. Computat.,52: 411-435.
- Dablain, M.A., 1986. The application of high-order differencing to the scalar wave equation.Geophysics, 51: 54-66.
- Dumbser, M. and Késer, M., 2006. An arbitrary high order discontinuous Galerkin method forelastic waves on unstructured meshes-II. The three-dimensional isotropic case. Geophys. J.Internat., 167: 316-336.
- Eriksson, K. and Johnson, C., 1991. Adaptive finite element methods for parabolic problems: Alinear model problem. SIAM J. Numer. Anal., 28: 43-77.
- Fei, T. and Larner, K., 1995. Elimination of numerical dispersion in finite-difference modeling andmigration by flux-corrected transport. Geophysics, 60: 1830-1842.
- Fornberg, B., 1990. High-order finite differences and pseudo-spectral method on staggered grids.SIAM J. Numer. Anal., 27: 904-918.
- Guan, Z. and Lu, J.F., 2006. Numerical methods. Tsinghua University Press, Beijing.
- Hairer, E., Norsett, S.P. and Wanner, G., 1993. Solving Ordinary Differential Equations I: NonstiffProblems. Springer-Verlag, Berlin Heidelberg.
- Johnson, C., 1990. Adaptive finite element methods for diffusion and convection problem. Comput.Meth. Appl. Mechan. Engin., 82: 301-322.
- Késer, M. and Dumbser, M., 2006. An arbitrary high order discontinuous Galerkin method forelastic waves on unstructured meshes I: the two-dimensional isotropic case with externalsource terms. Geophys. J. Internat., 166: 855-877.
- Komatitsch, D. and Vilotte, J.P., 1998. The Spectral Element method: an efficient tool to simulatethe seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am., 88:368-392.
- Komatitsch, D., Barnes, C. and Tromp, J., 2000. Simulation of anisotropic wave propagation basedupon a spectral-element method. Geophysics, 65: 1251-1260.
- Konddoh, Y., Hosaka, Y. and Ishii, K., 1994. Kernel optimum nearly analytical discretizationalgorithm applied to parabolic and hyperbolic equations. Comput. Mathem. Appl., 27: 59-90.148 WANG, YANG & LIU
- Kosloff, D. and Baysal, E., 1982. Forward modeling by a Fourier method. Geophysics, 47:1402-1412.
- Lax, P.D. and Wendroff, B., 1964. Difference schemes for hyperbolic equations with high orderof accuracy. Communic. Pure Appl. Mathemat., 17: 381-398.
- Lele, S.K., 1992. Compact finite difference scheme with spectral-like resolution. J. Computat.Phys., 103: 16-42.
- Levander, A., 1988. Fourth-order finite-difference P-SV seismograms. Geophysics, 53: 1425-1436.
- Luo, Y. and Schuster, G., 1990. Parsimonious staggered grid finite-differencing of the waveequation. Geophys. Res. Lett., 17: 155-158.
- Moczo, P., Kristek, J. and Halada. L., 2000. 3D fourth-order staggered-grid finite-differenceschemes: stability and grid dispersion. Bull. Seismol. Soc. Am., 90: 587-603.
- Richtmeyer, R.D. and Morton, K.W., 1967. Difference Methods for Initial Value Problems.Interscience, New York.
- Sei, A. and Symes, W., 1994. Dispersion analysis of numerical wave propagation and itscomputational consequences. J. Scientif. Comput., 10: 1-27.
- Shu, C.W., 1988. Total-variation-diminishing time discretizations. SIAM J. Scientif. Statist.Comput., 9: 1073-1084.
- Shu, C.W. and Osher, S., 1988. Efficient implementation of essentially non-oscillatory shockcapturing schemes. J. Computat. Phys., 77: 439-471.
- Takeuchi, N. and Geller, R.J., 2000. Optimally accurate second order time-domain finite differencescheme for computing synthetic seismograms in 2-D and 3-D media. Phys. Earth Planet.Inter., 119: 99-131.
- Turner, M.J., Clough, R.W., Martin, H.C. and Topp, L.J., 1956. Stiffness and deflection analysisof complex structures. J. Aeronaut. Sci., 23: 805-823.
- Virieux, J., 1984. SH-wave propagation in heterogeneous media: velocity stress finite-differencemethod. Geophysics, 49: 1933-1957.
- Virieux, J., 1986. P-SV wave propagation in heterogeneous medium: Velocity-stress finite-differencemethod. Geophysics, 51: 889-901.
- Wang, S.Q., Yang, D.H. and Yang, K.D., 2002. Compact finite difference scheme for elasticequations. J. Tsinghua Univ. Sci. Tech., 42: 1128-1131. (in Chinese)
- Whiteman, J.R., 1975. A Bibliography for Finite Elements. Academic Press, New York.
- Yang, D.H., Chen, S. and Li, J.Z., 2007. A Runge-Kutta method using high-order interpolationapproximation for solving 2D acoustic and elastic wave equations. J. Seismic Explor., 16:331-353.
- Yang., D.H., Liu, E. and Zhang, Z.J., 2008. Evaluation of the u-W finite element method inanisotropic porous media. J. Seismic Explor., 17: 273-299.
- Yang, D.H., Liu, E., Zhang, Z.J. and Teng, J., 2002. Finite-difference modeling intwo-dimensional anisotropic media using a flux-corrected transport technique. Geophys. J.Internat., 148: 320-328.
- Yang, D.H., Peng, J.M., Lu, M. and Terlaky, T., 2006. Optimal nearly analytic discreteapproximation to the scalar wave equation. Bull. Seismol. Soc. Am., 96: 1114-1130.
- Yang, D.H., Teng, J.W., Zhang, Z.J. and Liu, E., 2003. A nearly-analytic discrete method foracoustic and elastic wave equations in anisotropic media. Bull. Seismol. Soc. Am., 93:882-890.
- Yang, D.H., Wang, N., Chen, S. and Song, G.J., 2009. An explicit method based on the implicit
- Runge-Kutta algorithm for solving the wave equations. Bull. Seismol. Soc. Am., 99:3340-3354.
- Zahradnik, J., Moczo, P. and Hron, T., 1993. Testing four elastic finite-difference schemes forbehavior at discontinuities. Bull. Seismol. Soc. Am., 83: 107-129.
- Zhang, Z.J., Wang, G.J. and Harris, J.M., 1999. Multi-component wave-field simulation in viscousextensively dilatancy anisotropic media. Phys. Earth Planet. Inter., 114: 25-38.
- Zheng, H.S., Zhang, Z.J. and Liu, E.R., 2006. Non-linear seismic wave propagation in anisotropicmedia using the flux-corrected transport technique. Geophys. J. Internat., 165: 943-956.WEAK DISPERSION WAVE-FIELD SIMULATION 149