ARTICLE

A numerical modeling of wave propagation that is independent of coordinate transformation

LUC T. IKELLE
Show Less
CASP Project, Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3115, U.S.A.,
JSE 2012, 21(2), 153–176;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

It is a remarkable fact that Maxwell’s equations under any coordinate transformation can be written in an identical mathematical form as the ones in Cartesian coordinates. However, in some particular coordinate transformations, like the cylindrical coordinate transformations, the physical properties becomes anisotropic, even if they are isotropic in the Cartesian coordinates. Even the permittivity can be anisotropic. We here review these fundamental results. The remarkable invariance of Maxwell’s equations under coordinate transformation can also extend to elastodynamic wave equations by rewriting them in a new form. We have used this new form of the elastodynamic wave equations to describe a numerical solution of elastic wave propagation which is independent of coordinate transformation.

Keywords
elastodynamic equations
Maxwell’s equations
curvilinear coordinates
natural coordinates
physical coordinates
finite-difference solution
References
  1. Aki, K. and Richards, P.G., 1980. Quantitative Seismology: theory and methods (2 vols.). W.H. ©
  2. Freeman and Co., San Francisco.
  3. Berenger, J.P., 1994. A perfectly matched layer for the absorption of electromagnetic waves. J.
  4. Comput. Phys., 114: 185-200.
  5. Carcione, J.M., 1994. The wave equation in generalized coordinates. Geophysics, 59: 1911-1919.
  6. Cerjian, C., Kosloff, D., Kosloff, R. and Reshef, M., 1985. A nonreflecting boundary condition
  7. for discrete acoustic-wave and elastic-wave equations. Geophysics, 50: 705-708.
  8. Chew, W.C. and Liu, Q.H., 1996. Perfectly matched layers for elastodynamics: A new absorbing
  9. boundary condition: J. Comput. Acoust., 4: 341-359.
  10. de Hoop, A.T., 1995. Handbook of Radiation and Scattering of Waves. Academic Press, San Diego.
  11. Fornberg, B., 1988. The pseudospectral method: Accurate representation of interfaces in elastic
  12. wave calculations. Geophysics, 53: 625-637.
  13. Friis, H.A., Johansen, T.A., Haveraaen, M., Munthe-Kaas, H. and Drottning, A., 2001. Use of
  14. coordinate-free numerics in elastic wave simulation. Appl. Numer. Mathemat., 39: 151-171.
  15. Gangi, A.F., 2000. Constitutive equations and reciprocity. Geophys. J. Internat., 143: 311-318.
  16. Hestholm, S.0. and Ruud, B.O., 1994. 2-D finite difference elastic wave modelling including 23
  17. surface topography. Geophys. Prosp., 42: 371-390.
  18. Ikelle, L.T. and Amundsen, L., 2005. An Introduction to Petroleum Seismology. Investigations in
  19. Geophysics, SEG, Tulsa.
  20. Ikelle, L.T., 2010. Coding and Decoding: Seismic Data. Elsevier Science Publishers, Amsterdam.
  21. Ikelle, L.T., 2012. On elastic-electromagnetic equivalences. Geophys. J. Internat., in press.
  22. Kausel, E., 2006. Fundamental Solutions in Elastodynamics: A Compendium. Cambridge University
  23. Press, Cambridge.
  24. Komatitsch, D., Coutel, F. and Mora, P., 1996. Tensorial formulation of the wave-equation for
  25. modeling curved interfaces. Geophys. J. Internat., 127: 156-168.
  26. Liu, Q.H., 1999. Perfectly matched layers for elastic waves in cylindrical and spherical coordinates.
  27. J. Acoust. Soc. Am., 105: 2075-2084.
  28. Milton, G.W., Briane, M. and Willis, J.R., 2006. On cloaking for elasticity and physical equations
  29. with a transformation invariant form. New J. Phys., 8: 248-267.
  30. Nielsen, P., Flemming, I., Berg, P. and Skovgaard, 0., 1994. Using the pseudospectral technique
  31. on curved grids for 2D acoustic forward modelling. Geophys. Prosp., 42: 321-341.
  32. Pendry, J.B., Schurig, D. and Smith, D.R., 2006. Controlling electromagnetic fields. Science, 312:
  33. 1780-1782.
  34. Pissarenko, D., Reshetova, G. and Tcheverda, V., 2009. 3D finite-difference synthetic acoustic log
  35. in cylindrical coordinates. Geophys. Prosp., 57: 367-377.
  36. Post, E.J., 1962. Formal Structure of Electromagnetics. Wiley & Sons, New York.
  37. Stratton, J.A., 1941. Electromagnetic Theory. McGraw-Hill, New York.
  38. Tessmer, E., Kosloff, D. and Behle, A., 1992. Elastic wave propagation simulation in the presence
  39. of surface topography. Geophys. J. Internat., 108: 621-632.
  40. 176 IKELLE
  41. Tessmer, E. and Kosloff, D., 1994. 3-D elastic modeling with surface topography by a Chebychev
  42. spectral method. Geophysics, 59: 464-473.
  43. Yan, W., Yan, M., Ruan, Z. and Qiu, M., 2008. Coordinate transformations make perfect
  44. invisibility cloaks with arbitrary shape. New J. Phys., 10: 1-13.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing