Pre-stack inversion of angle gathers using a hybrid evolutionary algorithm

Saraswat, P. and Sen, M.K., 2012. Pre-stack inversion of angle gathers using a hybrid evolutionary algorithm. Journal of Seismic Exploration, 21: 177-200. Inversion of pre-and post-stack seismic data for acoustic and shear impedances is a highly non-linear and ill-posed problem. A deterministic inversion of band-limited seismic data produces smooth models that are devoid of high frequency variations observed in well logs. The objective of this paper is two-fold, i.e., to develop an efficient scheme to explore and exploit the model space, and to efficiently sample broadband models statistically. We demonstrate that the use of starting models from fractal based a priori pdfs helps us to derive elastic models of very high resolution. We also introduce a new hybrid inversion algorithm that takes advantage of both deterministic and stochastic methodologies. A deterministic inversion based on conjugate gradient (CG) method produces smooth models while a stand-alone stochastic method based on differential evolution (DE) produces high-resolution models of nearly the same accuracy. A hybrid algorithm that uses CG solution as a starting model converges much faster than a standalone DE to very good solutions. We demonstrate our results with application to a field seismic dataset. The hybrid algorithm can also be used to sample the most significant parts of the model space rapidly resulting in estimates of uncertainty.
- Aki, K. and Richards, P.G., 1980. Quantitative Seismology: Theory and methods. W.H. Freeman
- & Co., San Francisco.
- Chundru, R.K., Sen, M.K. and Stoffa, P.L., 1997. Hybrid optimization methods for geophysical
- inversion. Geophysics, 62: 1196-1207.
- Caccia, D.C., Percival, D., Cannon, M.J., Raymond, G. and Bassingthwaighte, J.B., 1997.
- Analyzing exact fractal time series: Evaluating dispersional analysis and rescaled range
- methods. Physica A, 246: 609-632.
- Chamoli, A., Bansal, A.R. and Dimri, V.P., 2007. Wavelet and rescaled range approach for the
- Hurst coefficient for short and long time series. Comput. Geosci., 33: 83-93.
- Contreras, A., Torres-Verdin, C. and Fasnacht, T., 2006. AVA simultaneous inversion of partially
- stacked seismic amplitude data for the spatial delineation of lithology and fluid units of
- deepwater hydrocarbon reservoirs in the central Gulf of Mexico. Geophysics, 71: E41-E48.
- Dimri, V.P., 2005. Fractals in geophysics and seismology: An introduction. In: Dimri, V.P. (Ed.),
- Fractal Behaviour of the Earth System. Springer Verlag, Berlin: 1-18.
- Dimri, V.P., 2011. Fractal Models in Seismic Exploration. Handbook of Geophysical
- Exploration-Seismic Exploration. Elsevier Science Publishers, Amsterdam.
- Emanual, A.S., Alameda, G.D., Behrens, R.A. and Hewett, T.A., 1987. Reservoir performance
- prediction methods based on fractal geostatistics. 62nd Ann. Techn. SPE Conf.: 16971.
- Fatti, J.L., Smith, G.C., Vail, P.J., Strauss, P.J. and Levitt, P.R., 1994. Detection of gas in
- sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack
- technique. Geophysics, 59: 1362-1376.
- Francis, A.M., 1997. Acoustic impedance inversion pitfalls and some fuzzy analysis. The Leading
- Edge, 16: 275-278.
- Ghazali, A.R., Verschuur, D.J. and Gisolf, A., 2010. Multi-dimensional non-linear full waveform
- inversion of gas cloud reflection data using a genetic algorithm and a blended acquisition
- approach. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 29, 935.
- Goodway, W., Chen, T. and Downton, J., 1997. Improved AVO fluid detection and lithclogy
- discrimination using Lamé petrophysical parameters; 'Lambda-Rho', 'Mu-Rho', &
- 'Lambda/Mu fluid stack', from P- and S-inversions. CSEG Mtg. Techn. Abstr., 148-151;
- Extended Abstr., 59th EAGE Conf., Geneva: 6-51.
- Hardy, H.H., 1992. The fractal character of photos of slabbed cores. Mathemat. Geol., 24: 73-97.
- Hewett, T.A., 1986. Fractal distribution of reservoir heterogeneity and their influence on fluid
- transport. 61st Ann. Techn. SPE Conf.: 15386.
- Jervis, M., Sen, M.K. and Stoffa, P.L., 1993a. 2D migration velocity estimation using a genetic
- algorithm. Geophys. Res. Lett., 20: 1495-1498.
- Jin, S. and Madariaga, R., 1993. Background velocity inversion with a genetic algorithm. Geophys.
- Res. Lett., 20: 93-96.
- Kennett, B.L.N., 1983. Seismic wave propagation in stratified media. Cambridge University Press,
- Cambridge.
- Koutsoyiannis, D., 2002. Internal report,
- http://www. itia.ntua. gr/getfile/511/2/2002HSJHurstSuppl.pdf
- Ma, X.-Q., 2002. Simultaneous inversion of prestack seismic data for rock properties using
- simulated annealing. Geophysics, 67: 1877-1885. ,
- Mallick, S., 1999. Some practical aspects of prestack waveform inversion using a genetic algorithm:
- an example from the east Texas Woodbine gas sand. Geophysics, 64: 326-336.
- Mandelbrot, B.B., 1965. A fast fractional Gaussian noise generator. Water Resourc. Res., 7:
- 543-553.
- Mishra, S.K., 2006. Global optimization by differential evolution and particle swarm methods:
- evaluation on some benchmark functions. Social Sci. Res. Netw.
- Sambridge, M.S. and Drijkoningen, G.G., 1992. Genetic algorithms in seismic waveform inversion.
- Geophys. J. Internat., 109: 323-342.
- 200 SARASWAT & SEN
- Sambridge, M.S. and Gallagher, K., 1993. Earthquake hypocenter location using genetic algorithms.
- Bull. Seismol. Soc. Am., 83: 1467-1491.
- Scales, J.A., 1987. Tomographic inversion via the conjugate gradient method. Geophysics, 52: 179.
- Saupe, D., 1988. Algorithms for random fractals. In: The Science of Fractal Images, Chapter 2.
- Springer-Verlag, Berlin.
- Sen, M.K. and Stoffa, P.L., 1991. Nonlinear one-dimensional seismic waveform inversion using
- simulated annealing. Geophysics, 56: 1624-1638.
- Sen, M.K. and Stoffa, P.L., 1992. Seismic waveform inversion using global optimization. J. Seismic
- Explor., 1: 9-27.
- Sen, M.K. and Stoffa, P.L., 1995. Global Optimization Methods in Geophysical Inversion. Elsevier
- Science Publishers, Amsterdam.
- Sen, M.K., 2006. Seismic Inversion. SPE, Tulsa.
- Smith, G.C. and Gidlow, P.M., 1987. Weighted stacking for rock property estimation and detection
- of gas. Geophys. Prosp., 35: 993-1014.
- Srivastava, R.P. and Sen, M.K., 2009. Stochastic inversion of post-stack seismic data using fractal
- prior. J. Geophys. Engin., 6: 412-425.
- Srivastava, R.P. and Sen, M.K., 2010. Stochastic inversion of pre-stack seismic data using fractal
- based starting models. Geophysics, 75: 47-59.
- Storn, R. and Price, K., 1997. Differential evolution - a simple and efficient heuristic for global
- optimization over continuous spaces. J. Global Optimiz., 11: 341-359.
- ter Braak, C.J.F., 2006. A Markov Chain Monte Carlo version of the genetic algorithm Differential
- Evolution: easy Bayesian computing for real parameter spaces. Statist. Comput., 16:
- 239-249.
- Turcotte, D.L., 1997. Fractals and Chaos in Geology and Geophysics. Cambridge University Press,
- Cambridge.
- Varela, O.J., Torres-Verdin, C. and Sen, M.K., 2006. Enforcing smoothness and assessing
- uncertainty in nonlinear one-dimensional pre-stack seismic inversion. Geophys. Prosp., 54:
- 239-259.
- Wang, Y., 1999. Simultaneous inversion for model geometry and elastic parameters. Geophysics,
- 64: 182-190.