Cite this article
1
Download
4
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Kirchhoff pre-stack depth scalar migration of complete wave field using the prevailing-frequency approximation of the coupling ray theory

VÁCLAV BUCHA
Show Less
Department of Geophysics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Praha 2, Czech Republic,
JSE 2023, 32(2), 105–129;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Bucha, V., 2023. Kirchhoff pre-stack depth scalar migration of complete wave field using the prevailing-frequency approximation of the coupling ray theory. Journal of Seismic Exploration, 32: 105-129. Many ray tracers based on the anisotropic ray theory yield distorted results or even collapse when shear waves propagating in inhomogeneous weakly anisotropic models are computed. The coupling ray theory provides more accurate polarizations and travel times of S-waves in inhomogeneous models with weak anisotropy than the anisotropic ray theory and solves the problematic behaviour of S-wave polarizations. We test the application of the prevailing-frequency approximation of the coupling ray theory to 3D ray-based Kirchhoff pre-stack depth scalar migration and compute migrated sections in two simple inhomogeneous weakly anisotropic velocity models composed of two layers separated by a curved interface. The recorded complete seismic wave field is calculated using the Fourier pseudospectral method. We use a scalar imaging for the complete wave field in a single-layer velocity model with the same anisotropy as in the upper layer of the velocity model used to calculate the recorded wave field. We migrate reflected PP, converted PS1 and PS2 elementary waves without the separation of the recorded complete wave field. For migration of the S-wave part we use the prevailing-frequency approximation of the coupling ray theory and for comparison we apply the anisotropic-ray-theory approximation. Calculations using the prevailing-frequency approximation of the coupling ray theory are without problems for both models. On the other hand, for the anisotropic-ray-theory approximation in the model with weaker anisotropy we have to use limitation of Green function maxima otherwise the migrated sections are wrong. In spite of complex recorded wave fields, without decomposition, the migrated interfaces for the vertical component of the PP reflected wave, radial and transversal components of PS1 and PS2 converted waves are in all stacked migrated sections relatively good with exception of spurious interface images close to the correct ones.

Keywords
Fourier pseudospectral method
3D Kirchhoff pre-stack depth scalar migration
inhomogeneous anisotropic velocity model
weak anisotropy
complete wave field
coupling ray theory
References
  1. Alkhalifah, T., 2006. Kirchhoff time migration for transversely isotropic media: An
  2. application to Trinidad data. Geophysics, 71: $29.
  3. Alkhalifah, T., 2011. Efficient traveltime compression for 3-D prestack Kirchhoff
  4. migration. Geophys. Prosp., 59: 1-9.
  5. Alkhalifah, T. and Larner, K., 1994. Migration error in transversely isotropic media.
  6. Geophysics, 59: 1405-1418.
  7. Behera, L. and Tsvankin, I., 2009. Migration velocity analysis for tilted transversely
  8. isotropic media. Geophys. Prosp., 57: 13-26.
  9. Bucha, V., 2012. Kirchhoff prestack depth migration in 3-D simple models: comparison
  10. of triclinic anisotropy with simpler anisotropies. Stud. Geophys. Geod., 56: 533-
  11. Bucha, V., 2013. Kirchhoff prestack depth migration in velocity models with and
  12. without vertical gradients: Comparison of triclinic anisotropy with simpler
  13. anisotropies. In: Seismic Waves in Complex 3-D Structures, Report 23, pp. 45-
  14. 59, Dept. Geophys., Charles Univ., Prague.
  15. Bucha, V., 2017. Kirchhoff prestack depth migration in simple models with differently
  16. rotated elasticity tensor: orthorhombic and triclinic anisotropy. J. Seismic Explor.,
  17. 26: 1-24.
  18. Bucha, V., 2019. Kirchhoff prestack depth scalar migration of a complete wave field:
  19. stair-step interface. Seismic Waves in Complex 3-D Structures, 29: 39-44.
  20. Bucha, V., 2021. Kirchhoff pre-stack depth scalar migration in a simple triclinic velocity
  21. model for three-component P, S1, S2 and converted waves. Geophys. Prosp., 69:
  22. 269-288.
  23. Bucha, V. and Bulant, P. (Eds.), 2022. SW3D-CD-25 (DVD-ROM). Seismic Waves in
  24. Complex 3-D Structures, 31: 89-90.
  25. Bulant, P., 1996. Two-point ray tracing in 3-D. Pure Appl. Geophys., 148: 421-447.
  26. Bulant, P., 1999. Two-point ray-tracing and controlled initial-value ray-tracing in 3-D
  27. heterogeneous block structures. J. Seismic Explor., 8: 57-75.
  28. Bulant, P. and Klimes,, L., 1999. Interpolation of ray-theory travel times within ray cells.
  29. Geophys. J. Internat., 139: 273-282.
  30. Bulant, P. and Klimes,, L., 2002. Numerical algorithm of the coupling ray theory in
  31. weakly anisotropic media. Pure Appl. Geophys., 159: 1419-1435.
  32. Bulant, P. and KlimeS, L., 2008. Numerical comparison of the isotropic-common-ray and
  33. anisotropic-common-ray approximations of the coupling ray theory. Geophys. J.
  34. Internat., 175: 357-374.
  35. Bulant, P., PSencik, I., Farra, V. and Tessmer, E., 2011. Comparison of the anisotropic-
  36. common-ray approximation of the coupling ray theory for S-waves with the
  37. Fourier pseudo-spectral method in weakly anisotropic models. Seismic Waves
  38. in Complex 3-D Structures. Report 21: 167-183, Dept. Geophys., Charles Univ.,
  39. Prague.
  40. Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M., 1985. A non-reflecting boundary
  41. condition for discrete acoustic and elastic wave calculation. Geophysics, 50: 705-
  42. Cerveny, V., Klime’, L. and PSenéik, I., 1988. Complete seismic-ray tracing in three-
  43. dimensional structures. In: Doornbos, D.J. (Ed.), Seismological Algorithms.
  44. Academic Press Inc., New York: 89-168.
  45. Coates, R.T. and Chapman, C.H., 1990. Quasi-shear wave coupling in weakly
  46. anisotropic 3-D media. Geophys. J. Internat., 103: 301-320.
  47. Cohen, J.K. and Stockwell, Jr. J.W., 2013. CWP/SU: Seismic Un*x Release No. 43R5:
  48. an open source software package for seismic research and processing, Center for
  49. Wave Phenomena, Colorado School of Mines, Goldn.
  50. Farra, V. and Pseneik, I., 2008. First-order ray computations of coupled S-waves in
  51. inhomogeneous weakly anisotropic media. Geophys. J. Internat., 173: 979-989.
  52. Farra, V. and PSen¢ik, I., 2010. Coupled S-waves in inhomogeneous weakly anisotropic
  53. media using first-order ray tracing. Geophys. J. Internat., 180: 405-417.
  54. Gajewski, D. and PSenéik, L, 1990. Vertical seismic profile synthetics by dynamic ray
  55. tracing in laterally varying layered anisotropic structures. J. Geophys. Res., 95B:
  56. 11301-11315.
  57. Gray, S.H., Etgen, J., Dellinger, J. and Whitmore, D., 2001. Seismic migration problems
  58. and solutions. Geophysics, 66: 1622-1640.
  59. Klimes, L., 2002. Relation of the wave-propagation metric tensor to the curvatures of the
  60. slowness and ray-velocity surfaces. Stud. Geophys. Geod., 46: 589-597.
  61. Klimes, L. and Bulant, P., 2016. Prevailing-frequency approximation of the coupling ray
  62. theory for electromagnetic waves or elastic S-waves. Stud. Geophys. Geod., 60:
  63. 419-450.
  64. Klimes, L. and Bulant, P., 2017. Interpolation of the coupling-ray-theory Green function
  65. within ray cells. Stud. Geophys. Geod., 61: 541-559.
  66. Kosloff, D. and Baysal, E., 1982. Forward modeling by a Fourier method. Geophysics,
  67. 47: 1402-1412.
  68. P&Sencik, I. and Dellinger, J., 2001. Quasi-shear waves in inhomogeneous weakly
  69. anisotropic media by the quasi-isotropic approach: a model study. Geophysics,
  70. 66: 308-319.
  71. PSen¢ik, I., Farra, V. and Tessmer, E., 2012. Comparison of the FORT approximation of
  72. the coupling ray theory with the Fourier pseudospectral method. Stud. Geophys.
  73. Geod., 56: 35-64.
  74. Tessmer, E., 1995. 3-D seismic modeling of general material anisotropy in the presence
  75. of the free surface by a Chebychev spectral method. Geophys. J. Internat., 121:
  76. 557-575.
  77. Versteeg, R.J. and Grau, G. (Eds.), 1991. The Marmousi experience. Proc. EAGE
  78. workshop on Practical Aspects of Seismic Data Inversion (Copenhagen, 1990).
  79. EAEG, Zeist. 5
  80. Waheed, U., PSen¢ik, I., Cerveny, V., Iversen, E. and Alkhalifah, T., 2013. Two-point
  81. paraxial traveltime formula for inhomogeneous isotropic and anisotropic media:
  82. tests of accuracy. Geophysics, 78(5): C41-C56.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing