Noise attenuation using adaptive wavelet threshold based on CEEMD in f-x domain

Ji, M., Zhao, X.Y., Zhu, W., You, Y.C., Zhang, J.F., Shang, M., Chuai, X., Xue, Y., Lian, C.H. and Chen, W., 2023. Noise attenuation using adaptive wavelet threshold based on CEEMD inf-x domain. Journal of Seismic Exploration, 32: 131-153. Noise attenuation plays an important role in seismic signal processing. Complementary Ensemble Empirical Mode Decomposition (CEEMD) is a classic algorithm for signal decomposition and is usually used for denoising. This algorithm is used to attenuate random noise by removing some high-frequency intrinsic mode functions (IMFs), apparently resulting in insufficient noise attenuation and loss of effective signal. Wavelet threshold denoising can be used to attenuate the useless part and enhance the useful part of the signal by selecting the appropriate threshold. Wavelet threshold denoising is often combined with CEEMD in time domain to achieve relatively good effects, but some of signal between seismic traces are fragmented. This paper proposes improved adaptive wavelet threshold denoising based on CEEMD in f-x domain. The new threshold function we proposed is constructed on the basis of the traditional soft and hard threshold functions, which overcomes the constant deviation and avoids the phase step phenomenon. The processing results for simulated and field data show that the proposed method has better attenuation effect on random noise than traditional methods.
- Chakraborty, A. and Okaya, D., 1995. Frequency time decomposition of seismic datausing wavelet based methods. Geophysics, 60(6): 1906-1916.
- Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical modedecomposition predictive filtering. Geophysics, 79(3): V81-V91, 2014.
- Chen, Y., Zhang, G., Gan, S. and Zhang, C., 2015. Enhancing seismic reflectionsusing empirical mode decomposition in the flattened domain. J. Appl.Geophys., 119: 99-105.
- Chen, W., Chen, Y. and Cheng, Z., 2017. Seismic time-frequency analysis usingan improved empirical mode decomposition algorithm. J. SeismicExplor., 26: 367-380.
- Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017. Multiple reflection noiseattenuation using adaptive randomized order empirical modedecomposition. IEEE Geosci. Remote Sens. Lett., 14: 18-22.
- Chen, Y. and Fomel, S., 2018. Emd-seislet transform. Geophysics, 83(1): A27-A32.
- Colominas, M., Schlotthauer, G. and Torres, M., 2014. Improved complete ensembleemd: A suitable tool for biomedical signal processing, Biomed. SignalProcess. Contr., 14(11): 19-29.
- Fomel, S., 2008. Adaptive multiple subtraction using regularized nonstationaryregression. Geophysics, 74(1): V25-V33.
- Griffin, D. and Jae, L., 1984. Signal estimation from modified short time Fouriertransform. IEEE Transact. Acoust., Speech Sign. Process., 32: 236-243.
- Han, J. and Mirko, V., 2015. Microseismic and seismic denoising via ensembleempirical mode decomposition and adaptive thresholding, Geophysics,80(6): KS69-KS80.
- Hess, N. and Wickerhauser, M.,1996. Wavelets and time-frequency analysis.Proc. IEEE, 84(4): 523-540.
- Huang, N., Shen, Z., Long, S., Wu, M., Shi, H., Zheng, Q., Yen, N., Tung, C.and Liu, H., 1998. The empirical mode decomposition and the Hilbertspectrum for nonlinear and nonstationary time series analysis. Proc.Mathemat. Physic. Engineer. Conf., 454: 903-995.
- Huang, W., Wang, R., Chen, Y., Li, H. and Gan, S., 2016. Damped multichannelsingular spectrum analysis for 3D random noise attenuation, Geophysics,81(4): V261-V270.
- Li, H., Wang, R., Cao, S., Chen, Y. and Huang, W., 2016. A method for low-frequency noise suppression based on mathematical morphology inmicroseismic monitoring. Geophysics, 81(3): V159-V167.
- Lin, H., Li, Y., Ma, H., Yang, B. and Dai, J., 2015. Matching pursuit basedspatial trace time frequency peak filtering for seismic random noiseattenuation. IEEE Geosci. Remote Sens. Lett., 12: 394-398.
- Liu, G., Fomel, S. and Chen, X., 2011. Time frequency analysis of seismic datausing local attributes. Geophysics, 76(6): 23P.
- Liu, G., Chen, X., Du, J. and Wu, K., 2012. Random noise attenuation using f-xregularized nonstationary autoregression, Geophysics, 77(2): V61-V69.
- Liu, G. and Chen, X., 2013. Noncausal f-x-y regularized nonstationary predictionfiltering for random noise attenuation on 3D seismic data. J. Appl.Geophys., 93: 60-66.
- Liu, W., Cao, S. and Chen, Y., 2016. Seismic time frequency analysis viaempirical wavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
- Liu, W. and Chen, W., 2019. Recent advancements in empirical wavelettransform and its applications, IEEE Access, 7: 1.
- Med, A., 1998. Time frequency and wavelets in biomedical signal processing. IEEEEngineer. Medic. Biol. Mag., 17 (6): 15-97.
- Morlet, J., Arens, G., Fourgeau, E. and Giard, D., 1982. Wave propagation andsampling theory part 1i: Sampling theory and complex waves. Geophysics,47: 222-236.
- Ouadfeul, S. and Aliouane, L., 2014. Random seismic noise attenuation data usingthe discrete and the continuous wavelet transforms. Arab. J. Geosci., 7,2531-2537.
- Qu, S., Zhou, H., Liu, R., Chen, Y., Zu, S., Yu, S., Yuan, J. and Yang, Y., 2016.
- Deblending of simultaneous source seismic data using fast iterativeshrinkage thresholding algorithm with firm thresholding, Acta Geophys.,64:1064-1092.
- Stockwell, R. and Mansinha, L., 1996. Localisation of the complex spectrum:
- The S-transform. IEEE Transact. Sign. Process., 44(4): 998-1001.
- Sun, M., Li, Z., Li, Q. and Wang, W., 2020. A noise attenuation method forweak seismic signals based on compressed sensing and ceemd. IEEEAccess, 8(99): 1.
- Wang, B., Wu, R., Chen, X. and Li, J., 2015. Simultaneous seismic datainterpolation and denoising with a new adaptive method based on dreamlettransform. Geophys. J. Internat., 201: 1180-1192.
- Wu, Z. and Huang, N., 2009. Ensemble empirical mode decomposition: a noiseassisted data analysis method. Advan. Adapt. Data Analys., 1(1): 1-41.
- Xu, X., Liu, W., Wang, J., Mu, D. and Qian, Z., 2011. Detection of voltageflicker caused by intergrated wind power based on adaptive liftingwavelet transform, Proced. Engineer., 15: 5105-5110.
- Zhang, L., Bao, P. and Pan, Q., 2001. Threshold analysis in wavelet baseddenoising. Electron. Lett., 37(24): 1485-1486.
- Zhang, R. and Ulrych, T., 2003. Physical wavelet frame denoising, Geophysics,68: 225.
- Zhu, X., Shen, Z., Eckermann, S., Bittner, M., Hirota, I. and Yee, J., 1997.
- Gravity wave characteristics in the middle atmosphere derived from theempirical mode decomposition method. J. Geophys. Res. Atmosph.,102(D14): 16.54-16.561.