Cite this article
1
Download
5
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Noise attenuation using adaptive wavelet threshold based on CEEMD in f-x domain

MIN JI1 XIANGYUAN ZHAO2 WEI ZHU3 YUCHUN YOU2 JINFENG ZHANG4 MOHAN SHANG2 XIAOYA CHUAI5 YAJUAN XUE6 CHENHAO LIAN7 WEI CHEN7
Show Less
1 Key Laboratory of Marine Oil and Gas Reservoirs Production, Sinopec, Beijing, P.R. China.,
2 Petroleum Exploration and Production Research Institute, Sinopec, Beijing 102206, P.R. China.,
3 Changqing Industrial Group Co., Ltd, Petro China Changqing Oilfield Branch, Xi’an, P.R. China.,
4 No.5 Oil Production Plant, Petro China Changqing Oilfield Branch, Xi’an, P.R. China.,
5 College of Geophysics, China University of Petroleum-Beijing, Beijing 102249, P.R. China.,
6 School of Communication Engineering, Chengdu University of Information Technology, Sichuan, P.R. China.,
7 School of Geophysics and Petroleum Resources, Yangtze University, Hubei, P.R. China.,
JSE 2023, 32(2), 131–153;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ji, M., Zhao, X.Y., Zhu, W., You, Y.C., Zhang, J.F., Shang, M., Chuai, X., Xue, Y., Lian, C.H. and Chen, W., 2023. Noise attenuation using adaptive wavelet threshold based on CEEMD inf-x domain. Journal of Seismic Exploration, 32: 131-153. Noise attenuation plays an important role in seismic signal processing. Complementary Ensemble Empirical Mode Decomposition (CEEMD) is a classic algorithm for signal decomposition and is usually used for denoising. This algorithm is used to attenuate random noise by removing some high-frequency intrinsic mode functions (IMFs), apparently resulting in insufficient noise attenuation and loss of effective signal. Wavelet threshold denoising can be used to attenuate the useless part and enhance the useful part of the signal by selecting the appropriate threshold. Wavelet threshold denoising is often combined with CEEMD in time domain to achieve relatively good effects, but some of signal between seismic traces are fragmented. This paper proposes improved adaptive wavelet threshold denoising based on CEEMD in f-x domain. The new threshold function we proposed is constructed on the basis of the traditional soft and hard threshold functions, which overcomes the constant deviation and avoids the phase step phenomenon. The processing results for simulated and field data show that the proposed method has better attenuation effect on random noise than traditional methods.

Keywords
complementary ensemble empirical mode decomposition
intrinsic mode function (IMF)
adaptive wavelet threshold
References
  1. Chakraborty, A. and Okaya, D., 1995. Frequency time decomposition of seismic data
  2. using wavelet based methods. Geophysics, 60(6): 1906-1916.
  3. Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical mode
  4. decomposition predictive filtering. Geophysics, 79(3): V81-V91, 2014.
  5. Chen, Y., Zhang, G., Gan, S. and Zhang, C., 2015. Enhancing seismic reflections
  6. using empirical mode decomposition in the flattened domain. J. Appl.
  7. Geophys., 119: 99-105.
  8. Chen, W., Chen, Y. and Cheng, Z., 2017. Seismic time-frequency analysis using
  9. an improved empirical mode decomposition algorithm. J. Seismic
  10. Explor., 26: 367-380.
  11. Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017. Multiple reflection noise
  12. attenuation using adaptive randomized order empirical mode
  13. decomposition. IEEE Geosci. Remote Sens. Lett., 14: 18-22.
  14. Chen, Y. and Fomel, S., 2018. Emd-seislet transform. Geophysics, 83(1): A27-
  15. A32.
  16. Colominas, M., Schlotthauer, G. and Torres, M., 2014. Improved complete ensemble
  17. emd: A suitable tool for biomedical signal processing, Biomed. Signal
  18. Process. Contr., 14(11): 19-29.
  19. Fomel, S., 2008. Adaptive multiple subtraction using regularized nonstationary
  20. regression. Geophysics, 74(1): V25-V33.
  21. Griffin, D. and Jae, L., 1984. Signal estimation from modified short time Fourier
  22. transform. IEEE Transact. Acoust., Speech Sign. Process., 32: 236-243.
  23. Han, J. and Mirko, V., 2015. Microseismic and seismic denoising via ensemble
  24. empirical mode decomposition and adaptive thresholding, Geophysics,
  25. 80(6): KS69-KS80.
  26. Hess, N. and Wickerhauser, M.,1996. Wavelets and time-frequency analysis.
  27. Proc. IEEE, 84(4): 523-540.
  28. Huang, N., Shen, Z., Long, S., Wu, M., Shi, H., Zheng, Q., Yen, N., Tung, C.
  29. and Liu, H., 1998. The empirical mode decomposition and the Hilbert
  30. spectrum for nonlinear and nonstationary time series analysis. Proc.
  31. Mathemat. Physic. Engineer. Conf., 454: 903-995.
  32. Huang, W., Wang, R., Chen, Y., Li, H. and Gan, S., 2016. Damped multichannel
  33. singular spectrum analysis for 3D random noise attenuation, Geophysics,
  34. 81(4): V261-V270.
  35. Li, H., Wang, R., Cao, S., Chen, Y. and Huang, W., 2016. A method for low-
  36. frequency noise suppression based on mathematical morphology in
  37. microseismic monitoring. Geophysics, 81(3): V159-V167.
  38. Lin, H., Li, Y., Ma, H., Yang, B. and Dai, J., 2015. Matching pursuit based
  39. spatial trace time frequency peak filtering for seismic random noise
  40. attenuation. IEEE Geosci. Remote Sens. Lett., 12: 394-398.
  41. Liu, G., Fomel, S. and Chen, X., 2011. Time frequency analysis of seismic data
  42. using local attributes. Geophysics, 76(6): 23P.
  43. Liu, G., Chen, X., Du, J. and Wu, K., 2012. Random noise attenuation using f-x
  44. regularized nonstationary autoregression, Geophysics, 77(2): V61-V69.
  45. Liu, G. and Chen, X., 2013. Noncausal f-x-y regularized nonstationary prediction
  46. filtering for random noise attenuation on 3D seismic data. J. Appl.
  47. Geophys., 93: 60-66.
  48. Liu, W., Cao, S. and Chen, Y., 2016. Seismic time frequency analysis via
  49. empirical wavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
  50. Liu, W. and Chen, W., 2019. Recent advancements in empirical wavelet
  51. transform and its applications, IEEE Access, 7: 1.
  52. Med, A., 1998. Time frequency and wavelets in biomedical signal processing. IEEE
  53. Engineer. Medic. Biol. Mag., 17 (6): 15-97.
  54. Morlet, J., Arens, G., Fourgeau, E. and Giard, D., 1982. Wave propagation and
  55. sampling theory part 1i: Sampling theory and complex waves. Geophysics,
  56. 47: 222-236.
  57. Ouadfeul, S. and Aliouane, L., 2014. Random seismic noise attenuation data using
  58. the discrete and the continuous wavelet transforms. Arab. J. Geosci., 7,
  59. 2531-2537.
  60. Qu, S., Zhou, H., Liu, R., Chen, Y., Zu, S., Yu, S., Yuan, J. and Yang, Y., 2016.
  61. Deblending of simultaneous source seismic data using fast iterative
  62. shrinkage thresholding algorithm with firm thresholding, Acta Geophys.,
  63. 64:1064-1092.
  64. Stockwell, R. and Mansinha, L., 1996. Localisation of the complex spectrum:
  65. The S-transform. IEEE Transact. Sign. Process., 44(4): 998-1001.
  66. Sun, M., Li, Z., Li, Q. and Wang, W., 2020. A noise attenuation method for
  67. weak seismic signals based on compressed sensing and ceemd. IEEE
  68. Access, 8(99): 1.
  69. Wang, B., Wu, R., Chen, X. and Li, J., 2015. Simultaneous seismic data
  70. interpolation and denoising with a new adaptive method based on dreamlet
  71. transform. Geophys. J. Internat., 201: 1180-1192.
  72. Wu, Z. and Huang, N., 2009. Ensemble empirical mode decomposition: a noise
  73. assisted data analysis method. Advan. Adapt. Data Analys., 1(1): 1-41.
  74. Xu, X., Liu, W., Wang, J., Mu, D. and Qian, Z., 2011. Detection of voltage
  75. flicker caused by intergrated wind power based on adaptive lifting
  76. wavelet transform, Proced. Engineer., 15: 5105-5110.
  77. Zhang, L., Bao, P. and Pan, Q., 2001. Threshold analysis in wavelet based
  78. denoising. Electron. Lett., 37(24): 1485-1486.
  79. Zhang, R. and Ulrych, T., 2003. Physical wavelet frame denoising, Geophysics,
  80. 68: 225.
  81. Zhu, X., Shen, Z., Eckermann, S., Bittner, M., Hirota, I. and Yee, J., 1997.
  82. Gravity wave characteristics in the middle atmosphere derived from the
  83. empirical mode decomposition method. J. Geophys. Res. Atmosph.,
  84. 102(D14): 16.54-16.561.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing