Cite this article
1
Download
8
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Application of data augmentation based on generative adversarial network in impedance inversion

PENG WANG HUIQUN XU ZHEN PENG ZEFENG WANG MENGQIONG YANG
Show Less
School of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, Hubei Province, P.R. China,
JSE 2023, 32(2), 155–168;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, P., Xu, H.Q., Peng, Z., Wang, Z. and Yang, M.Q., 2023. Application of data augmentation based on generative adversarial network in impedance inversion. Journal of Seismic Exploration, 32: 155-168. In recent years, various deep learning techniques have been widely used in the field of geophysics. As far as seismic impedance inversion is concerned, a nonlinear mapping model from seismic data to wave impedance can be established by training the depth inversion network, and then the impedance information can be predicted by the nonlinear model. However, the effectiveness of the current impedance inversion methods based on deep neural networks depends on the number of labels. The generalization ability of the model trained in the state of few labels is poor. Data augmentation can alleviate this situation by using the existing data. Therefore, the author proposes a method based on generative adversarial network (GAN) to augment the labels in the original data set, and uses geophysical forward modeling technology to forward seismic data to achieve the function of data augmentation. Unlike existing GAN, which generates samples directly from noise, the method augments the labeled data from the original dataset. The validity of this method is verified by model data and actual data. The method provides a data augmentation seismic inversion technique based on GAN for impedance inversion.

Keywords
impedance inversion
temporal convolutional network
data augmentation
generative adversarial network
References
  1. Antoniou, A., Storkey, A. and Edwards, H., 2017. Data augmentation generative
  2. adversarial networks. arXiv preprint arXiv:1711.04340.
  3. Ba, J.L., Kiros, J.R. and Hinton, G.E., 2016. Layer normalization. arXiv preprint
  4. arXiv: 1607.06450.
  5. Bai, S., Kolter, J.Z. and Koltun, V., 2018. An empirical evaluation of generic
  6. convolutional and recurrent networks for sequence modeling. arXiv preprint
  7. arXiv: 1803.01271.
  8. Bayer, M., Kaufhold, M.A., Buchhold, B., Keller, M., Dallmeyer, J. and Reuter,
  9. C.. 2022. Data augmentation in natural language processing: a novel text
  10. generation approach for long and short text classifiers. Internat. J. Mach.
  11. Learning and Cybernetics, (Vol. No. ???): 1-16.
  12. Cai, A., Di, H., Li, Z., Maniar, H. and Abubakar, A., 2020. Wasserstein cycle
  13. consistent generative adversarial network for improved seismic impedance
  14. inversion: Example on 3D SEAM model. Expanded Abstr., 20th Ann. Internat.
  15. SEG Mtg., Houston: 1274-1278.
  16. Du, C. and Huang, L. , 2019. Sentiment analysis method based on piecewise
  17. convolutional neural network and generative adversarial network. Internat. J.
  18. Comput. Communicat. Contr., 14: 7-20.
  19. Feng, S.Y., Gangal, V., Wei, J., Chandar, S., Vosoughi, S., Mitamura, T. and
  20. Hovy, E., 2021. A survey of data augmentation approaches for NLP. arXiv
  21. preprint arXiv:2105.03075.
  22. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
  23. and Bengio, Y., 2014. Generative adversarial nets. Advan. Neural Inform.
  24. Process. Syst., 27: (PAGE Nos. ???)
  25. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A.C., 2017.
  26. Improved training of Wasserstein Gans. Advan. Neural Inform. Process. Syst.,
  27. 30: (PAGE Nos. ???)
  28. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.,
  29. Improving neural networks by preventing co-adaptation of feature
  30. detectors. arXiv preprint arXiv:1207.0580.
  31. loffe, S. and Szegedy, C., 2015. Batch normalization: Accelerating deep network
  32. training by reducing internal covariate shift. Abstr. Internat. Conf. Machine
  33. Learn.: 448-456. PMLR.
  34. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A. and
  35. Shi, W., 2017. Photo-realistic single image super-resolution using a generative
  36. adversarial network. Proc. IEEE Conf. Comput. Vision Pattern Recognit.: 4681
  37. -4690.
  38. Mikolajezyk, A. and Grochowski, M., 2018. Data augmentation for improving deep
  39. learning in image classification problem. IEEE Internat. Interdiscipl. Ph.D.
  40. workshop (IIPhDW): 117-122.
  41. Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q. and Shen, D., 2017.
  42. Medical image synthesis with context-aware generative adversarial networks.
  43. Internat. Conf. Medic. Image Comput. Computer-assisted Intervent.: 417-425.
  44. Springer, New York.
  45. Pascual, S., Bonafonte, A. and Serra, J., 2017. SEGAN: Speech Enhancement
  46. generative adversarial network. arXiv preprint arXiv: 1703.09452.
  47. Razzak, M.I., Naz, S. and Zaib, A., 2018. Deep learning for medical image
  48. processing: Overview, challenges and the future. Classificat. BioApps, 323-350.
  49. Salimans, T. and Kingma, D.P., 2016. Weight normalization: A simple reparamet-
  50. erization to accelerate training of deep neural networks. Advan. Neural Infor.
  51. Process. Syst., 29.
  52. Shorten, C. and Khoshgoftaar, T.M., 2019. A survey on image data augmentation
  53. for deep learning. J. Big Data, 6: 1-48.
  54. Suh, S., Lee, H., Lukowicz, P. and Lee, Y.O., 2021. CEGAN: Classification
  55. Enhancement Generative Adversarial Networks for unraveling data imbalance
  56. problems. Neural Netw., 133: 69-86.
  57. Wang, X., Zhao, Y. and Pourpanah, F., 2020. Recent advances in deep learning.
  58. Internat. J. Mach. Learn. Cybernet., 11: 747-750.
  59. Wang, Y.Q., Wang, Q., Lu, W.K., Ge, Q. and Yan, X.F., 2022. Seismic impedance
  60. inversion based on cycle-consistent generative adversarial network. Petrol. Sci.,
  61. 19: 147-161.
  62. Yi, X.D., Wu, B.Y., Meng, D. and Cao, X.Y., 2021. Application of data augmen-
  63. tation and active learning to seismic wave impedance inversion. Oil Geophys.
  64. Prosp., 56: 707-715. DOI: 10.13810/).cnki.issn.1000-7210.2021.04.004.
  65. Young, T., Hazarika, D., Poria, S. and Cambria, E., 2018. Recent trends in deep
  66. learning based natural language processing. IEEE Computat. Intellig. Magaz.,13:
  67. 55-75.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing