Multi-azimuth prestack time migration for anisotropic, weakly heterogeneous media

Sdliner, W., Tsvankin, I. and Filpo Ferreira da Silva, E., 2010. Multi-azimuth prestack time migration for anisotropic, weakly heterogeneous media. Journal of Seismic Exploration, 19: 187-206. Conventional prestack time-migration velocity analysis is designed to estimate diffraction time functions in a fixed azimuthal direction from narrow-azimuth reflection data. Therefore, it can build accurate 3D migration operators only if the subsurface is isotropic (or azimuthally isotropic) and laterally homogeneous. Here, we extend time-migration methodology to multi-azimuth or wide-azimuth data from azimuthally anisotropic, weakly heterogeneous media. We derive the azimuthally varying diffraction time function from the most general form of Hamilton’s principal equation and apply a Taylor series expansion to the traveltime in the vicinity of the image ray. This approach helps relate the Taylor series coefficients to the corresponding multi-azimuth imaging parameters. The second-order coefficients, which define the 'migration-velocity ellipse', are obtained from time-migration velocity analysis in at least three distinct azimuthal directions. Our multi-azimuth prestack time migration (MAPSTM) solves the mismatch problem that occurs in conventional processing when the same depth point creates different time images in different azimuths. The algorithm is tested on synthetic data from a horizontally layered, azimuthally anisotropic model and an isotropic medium with a dipping interface.
- Bortfeld, R., 1989. Geometrical ray theory: Rays and traveltimes in seismic systems (second-order
- approximations of the traveltimes). Geophysics, 54: 342-349.
- Buchdahl, H., 1970. An introduction to Hamiltonian optics. Cambridge University Press,
- Cambridge.
- MULTI-AZIMUTH TIME MIGRATION 203
- Calvert, A., Jenner, E., Jefferson, R.R., Bloor, R., Adams, N., Ramkhelawan, R. and St.Clair,
- C., 2008. Preserving azimuthal velocity information: experiences with cross-spread noise
- attenuation and Offset Vector Tile PreSTM. Expanded Abstr., 78th Ann. Internat. SEG
- Mtg., Las Vegas: 207-211.
- Cerveny, V., 2001. Seismic ray theory. Cambridge University Press, Cambridge.
- Gajewski, D. and PSenéik, I., 1987. Computation of high-frequency seismic wavefields in 3-D
- laterally inhomogeneous anisotropic media. Geophys. J. Roy. Astronom. Soc., 91: 383-412.
- Grechka, V. and Tsvankin, I., 1998. 3-D description of normal moveout in anisotropic
- inhomogeneous media. Geophysics, 63: 1079-1092.
- Grechka, V. and Tsvankin, I., 1999. 3-D moveout velocity analysis and parameter estimation for
- orthorhombic media. Geophysics, 64: 820-837.
- Grechka, V., Helbig, K. and PSencik, I., 2006. The 11th Internat. Workshop on Seismic Anisotropy
- (11IWSA). Geophysics, 71: 13JF-29JF.
- Hubral, P. and Krey, T., 1980. Interval Velocities from Seismic Reflection Time Measurements.
- SEG, Tulsa, OK.
- Hubral, P., Schleicher, J. and Tygel, M., 1992. Three-dimensional paraxial ray properties - Part
- I, Basic relations. J. Seismic Explor., 1, 265-279.
- Jager, R., Mann, J., Hécht, G. and Hubral, P., 2001. Common reflection surface stack: Image and
- attributes. Geophysics, 66: 97-109.
- Keggin, J., Benson, M., Rietveld, W., Manning, T., Barley, B., Cook, P., Jones, E., Widmaier,
- M., Wolden, T. and Page, C., 2007. Multi-azimuth towed streamer 3D seismic in the Nile
- Delta, Egypt. Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio: 2891-2894.
- Manning, T., Shane, N., Page, C., Barley, B., Rietveld, W. and Keggin, J., 2007. Quantifying and
- increasing the value of multi-azimuth seismic. The Leading Edge, 26: 510-520.
- Moser, T.J. and Cerveny, V., 2007. Paraxial ray methods for anisotropic inhomogeneous media.
- Geophys. Prosp., 55: 21-37.
- Schleicher, J., Tygel, M. and Hubral, P., 1993. Parabolic and hyperbolic paraxial two-point
- traveltimes in 3D media. Geophys. Prosp., 41: 495-513.
- Schleicher, J., Tygel, M. and Hubral, P., 2007. Seismic True-amplitude Imaging. SEG, Tulsa, OK.
- Sdllner, W. and Andersen, E., 2005. Kinematic time migration and demigration in a 3D
- visualization system. J. Seismic Explor., 15: 255-270.
- Tsvankin, I., 1997. Reflection moveout and parameter estimation for horizontal transverse
- isotropy. Geophysics, 62: 614-629.
- Tsvankin, I., 2005. Seismic signatures and analysis of reflection data in anisotropic media. Elsevier
- Science Publishers, Amsterdam.
- Vasconcelos, I. and Tsvankin, I., 2006. Nonhyperbolic moveout inversion of wide-azimuth P-wave
- data for orthorhombic media. Geophys. Prosp., 54: 535-552.