ARTICLE

Multi-azimuth prestack time migration for anisotropic, weakly heterogeneous media

WALTER SÖLLNER1 ILYA TSVANKIN2 EDUARDO FILPO FERREIRA DA SILVA3
Show Less
1 Petroleum Geo-Services, Strandveien 4, N-1326 Lysaker, Norway. walter.sollner@pgs.com,
2 Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, U.S.A. ilya@dx.mines.edu,
3 Petrobras, Avenida de Chile 65, Rio de Janeiro, Brazil. efilpo@petrobras.com.br,
JSE 2010, 19(2), 187–206;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Sdliner, W., Tsvankin, I. and Filpo Ferreira da Silva, E., 2010. Multi-azimuth prestack time migration for anisotropic, weakly heterogeneous media. Journal of Seismic Exploration, 19: 187-206. Conventional prestack time-migration velocity analysis is designed to estimate diffraction time functions in a fixed azimuthal direction from narrow-azimuth reflection data. Therefore, it can build accurate 3D migration operators only if the subsurface is isotropic (or azimuthally isotropic) and laterally homogeneous. Here, we extend time-migration methodology to multi-azimuth or wide-azimuth data from azimuthally anisotropic, weakly heterogeneous media. We derive the azimuthally varying diffraction time function from the most general form of Hamilton’s principal equation and apply a Taylor series expansion to the traveltime in the vicinity of the image ray. This approach helps relate the Taylor series coefficients to the corresponding multi-azimuth imaging parameters. The second-order coefficients, which define the 'migration-velocity ellipse', are obtained from time-migration velocity analysis in at least three distinct azimuthal directions. Our multi-azimuth prestack time migration (MAPSTM) solves the mismatch problem that occurs in conventional processing when the same depth point creates different time images in different azimuths. The algorithm is tested on synthetic data from a horizontally layered, azimuthally anisotropic model and an isotropic medium with a dipping interface.

Keywords
time migration
velocity analysis
azimuthal anisotropy
NMO ellipse
image ray
multi-azimuth surveys
References
  1. Bortfeld, R., 1989. Geometrical ray theory: Rays and traveltimes in seismic systems (second-order
  2. approximations of the traveltimes). Geophysics, 54: 342-349.
  3. Buchdahl, H., 1970. An introduction to Hamiltonian optics. Cambridge University Press,
  4. Cambridge.
  5. MULTI-AZIMUTH TIME MIGRATION 203
  6. Calvert, A., Jenner, E., Jefferson, R.R., Bloor, R., Adams, N., Ramkhelawan, R. and St.Clair,
  7. C., 2008. Preserving azimuthal velocity information: experiences with cross-spread noise
  8. attenuation and Offset Vector Tile PreSTM. Expanded Abstr., 78th Ann. Internat. SEG
  9. Mtg., Las Vegas: 207-211.
  10. Cerveny, V., 2001. Seismic ray theory. Cambridge University Press, Cambridge.
  11. Gajewski, D. and PSenéik, I., 1987. Computation of high-frequency seismic wavefields in 3-D
  12. laterally inhomogeneous anisotropic media. Geophys. J. Roy. Astronom. Soc., 91: 383-412.
  13. Grechka, V. and Tsvankin, I., 1998. 3-D description of normal moveout in anisotropic
  14. inhomogeneous media. Geophysics, 63: 1079-1092.
  15. Grechka, V. and Tsvankin, I., 1999. 3-D moveout velocity analysis and parameter estimation for
  16. orthorhombic media. Geophysics, 64: 820-837.
  17. Grechka, V., Helbig, K. and PSencik, I., 2006. The 11th Internat. Workshop on Seismic Anisotropy
  18. (11IWSA). Geophysics, 71: 13JF-29JF.
  19. Hubral, P. and Krey, T., 1980. Interval Velocities from Seismic Reflection Time Measurements.
  20. SEG, Tulsa, OK.
  21. Hubral, P., Schleicher, J. and Tygel, M., 1992. Three-dimensional paraxial ray properties - Part
  22. I, Basic relations. J. Seismic Explor., 1, 265-279.
  23. Jager, R., Mann, J., Hécht, G. and Hubral, P., 2001. Common reflection surface stack: Image and
  24. attributes. Geophysics, 66: 97-109.
  25. Keggin, J., Benson, M., Rietveld, W., Manning, T., Barley, B., Cook, P., Jones, E., Widmaier,
  26. M., Wolden, T. and Page, C., 2007. Multi-azimuth towed streamer 3D seismic in the Nile
  27. Delta, Egypt. Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio: 2891-2894.
  28. Manning, T., Shane, N., Page, C., Barley, B., Rietveld, W. and Keggin, J., 2007. Quantifying and
  29. increasing the value of multi-azimuth seismic. The Leading Edge, 26: 510-520.
  30. Moser, T.J. and Cerveny, V., 2007. Paraxial ray methods for anisotropic inhomogeneous media.
  31. Geophys. Prosp., 55: 21-37.
  32. Schleicher, J., Tygel, M. and Hubral, P., 1993. Parabolic and hyperbolic paraxial two-point
  33. traveltimes in 3D media. Geophys. Prosp., 41: 495-513.
  34. Schleicher, J., Tygel, M. and Hubral, P., 2007. Seismic True-amplitude Imaging. SEG, Tulsa, OK.
  35. Sdllner, W. and Andersen, E., 2005. Kinematic time migration and demigration in a 3D
  36. visualization system. J. Seismic Explor., 15: 255-270.
  37. Tsvankin, I., 1997. Reflection moveout and parameter estimation for horizontal transverse
  38. isotropy. Geophysics, 62: 614-629.
  39. Tsvankin, I., 2005. Seismic signatures and analysis of reflection data in anisotropic media. Elsevier
  40. Science Publishers, Amsterdam.
  41. Vasconcelos, I. and Tsvankin, I., 2006. Nonhyperbolic moveout inversion of wide-azimuth P-wave
  42. data for orthorhombic media. Geophys. Prosp., 54: 535-552.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing