ARTICLE

The application of the nearly optimal sponge boundary conditions for seismic wave propagation in poroelastic media

JINGYI CHEN1* RALPH PHILLIP BORDING1 ENRU LIU2 ZHONGJIE ZHANG3 JOSÉ BADAL4
Show Less
1 Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1B 3X5,
2 ExxonMobil Upstream Research Company, Geophysics Division, Houston, TX 77252-2189, U.S.A.,
3 State Key Laboratory of Lithosphere Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China,
4 Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain,
JSE 2010, 19(1), 1–19;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Chen, J., Bording, J.P., Liu, E., Zhang, Z. and Badal, J., 2010. The application of the nearly optimal sponge boundary conditions for seismic wave propagation in poroelastic media. Journal of Seismic Exploration, 19: 1-19. Absorbing boundary conditions (ABC) play an important role in eliminating artificial reflections from the edges of the seismic model. In this paper, we present a modified nearly optimal sponge boundary condition. Utilizing the measure of reflected wave energy it is possible to construct a contour map for a range of sponge absorption coefficients and numbers of grid points at tapered zone, and determine the best set of parameters to minimize this energy metric. We apply this optimal scheme to the numerical simulation of seismic wave propagation in 2D transversely isotropic poroelastic media using staggered-grid finite-difference operator. We consider a first-order hyperbolic system that is equivalent to Biot/squirt equation. The vector of unknowns in this system consists of the solid and fluid particle velocity components, the solid stress components and the fluid pressure. Eighth-order accuracy in space and second-order accuracy in time are used in our numerical computation. Modeling studies indicate remarkably good results, the nearly optimal sponge boundary conditions is simple and effective enough to eliminate the artificial reflections from the boundaries of the model.

Keywords
boundary conditions
numerical modeling
poroelastic media
Biot/squirt mechanism
staggered-grid finite-difference
References
  1. Bérenger, J., 1994. A perfectly matched layer for the absorption of electromagnetic waves. J.
  2. Computat. Phys., 114: 185-200.
  3. Biot, M.A., 1956a. Theory of propagation of elastic waves in a fluid saturated porous solid. I.
  4. Low-frequency rang. J. Acoust. Soc. Am., 28: 168-178.
  5. Biot, M.A., 1956b. Theory of propagation of elastic waves in a fluid saturated porous solid. II.
  6. Higer-frequency range. J. Acoust. Soc. Am., 28: 179-191.
  7. Biot, M.A., 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl.
  8. Phys., 33: 1482-1498.
  9. Bording, R.P., 2004. Finite difference modeling-nearly optimal sponge boundary conditions.
  10. Expanded Abstr., 74th Ann. Internat. SEG Mtg., Denver: 1921-1924.
  11. Carcione, J.M., 1996. Wave propagation in anisotropic, saturated porous media: plane wave theory
  12. and numerical simulation. J. Acoust. Soc. Am., 99: 2655-2666.
  13. Carcione, J.M., 1998. Viscoelastic effective rheologies for modeling wave propagation in porous
  14. media. Geophys. Prosp., 46: 249-270.
  15. Carcione, J.M., Helle, H.B. and Pham N.H., 2003. White’s model for wave propagation in partially
  16. saturated rocks: Comparison with poroelastic numerical experiments. Geophysics, 68:
  17. 1389-1398.
  18. Carcione, J.M. and Picotti, S., 2006. P-wave seismic attenuation by slow-wave diffusion: Effects
  19. of inhomogeneous rock properties. Geophysics, 71: O1-O8.
  20. Carcione, J.M., 2007. Wave Fields in Real Media. Theory and numerical simulation of wave
  21. propagation in anisotropic, anelastic, porous and electromagnetic media. Elsevier Science
  22. Publishers, Amsterdam.
  23. Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M. 1985. A nonreflecting boundary condition for
  24. discrete acoustic and elastic wave equations. Geophysics, 50: 705-708.
  25. Clayton, R. and Engquist, B., 1977. Absorbing boundary conditions for acoustic and elastic wave
  26. equations. Bull. Seismol. Soc. Am., 67: 1529-1540.
  27. Collino, F. and Monk, P., 1998. Optimizing the perfectly matched layer. Computer Meth. Appl.
  28. Mechanics Engineer., 164: 157-171.
  29. Dai, N., Vafidis, A. and Kanasewich, E.R., 1995. Wave propagation in heterogeneous, porous
  30. media: A velocity-stress, finite-difference method. Geophysics, 60: 327-340.
  31. Dong, L., She, D., Guan, L. and Ma, Z., 2005. An eigenvalue decomposition method to construct
  32. absorbing boundary conditions for acoustic and elastic wave equations. J. Geophys.
  33. Engineer., 2, 192-198.
  34. Dvorkin, J. and Nur, A., 1993. Dynamic poroelasticity: A verified model with the squirt and the
  35. Biot mechanisms. Geophysics, 58: 523-533.
  36. Dvorkin, J., Nolen-Hoeksema, R. and Nur, A., 1994. The squirt-flow mechanism: Macroscopic
  37. description. Geophysics, 59: 428-438.
  38. Faria, E.L. and Stoffa, P.L., 1994. Finite-difference modeling in transversely isotropic media.
  39. Geophysics, 59: 282-289.
  40. Graves, R.W., 1996. Simulating seismic wave propagation in 3d elastic media using staggered-grid
  41. finite difference. Bull. Seismol. Soc. Am., 86: 1091-1106.
  42. SPONGE BOUNDARY CONDITIONS 19
  43. Guddati, M.N. and Lim, K.W., 2006. Continued fraction absorbing boundary conditions for convex
  44. polygonal domains. Internat. J. Numer. Meth. Engin., 66: 949-977.
  45. Hassanzadeh, S., 1991. Acoustic modeling in fluid saturated porous media. Geophysics 56, 424-435.
  46. Higdon, R.L., 1991. Absorbing boundary conditions for elastic waves. Geophysics, 56: 231-241.
  47. Komatitsch, D. and Martin, R., 2007. An unsplit convolutional perfectly matched layer improved
  48. at grazing incidence for the seismic wave equation. Geophysics, 72: SM155-SM167.
  49. Kuzuoglu, M. and Mittra, R., 1996. Frequency dependence of the constitutive parameters of causal
  50. perfectly matched anisotropic absorbers. IEEE Microwave Guided Wave Lett., 6: 447-449.
  51. Levander, A.R., 1988. Fourth-order finite-fifference P-SV seismograms. Geophysics, 53:
  52. 1425-1436.
  53. Lou, M. and Rial, J.A., 1995. Modelling elastic-wave propagation in inhomogeneous anisotropic
  54. media by the pseudo-spectral method. Geophys. J. Internat., 120: 60-72.
  55. Martin, R., Komatitsch, D. and Ezziani, A., 2008. An unsplit convolutional perfectly matched layer
  56. improved at grazing incidence for seismic wave propagation in poroelastic media.
  57. Geophysics, 73: T51-T61.
  58. Mittet, R., 2002. Free-surface boundary conditions for elastic staggered-grid modeling schemes.
  59. Geophysics, 67: 1616-1623.
  60. Moczo, P., Kristek, J. and Halada, L., 2000. 3D fourth-order staggered-grid finite-difference
  61. schemes: Stability and Grid dispersion. Bull. Seismol. Soc. Am., 90: 587-603.
  62. Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J. and Halada, L., 2002. The heterogeneous
  63. staggered-grid finite-fifference modeling of seismic motion with volume harmonic and
  64. arithmetic averaging of elastic moduli and densities. Bull. Seismol. Soc. Am., 92:
  65. 3042-3066.
  66. Mou, Y.G. and Pei, Z.L., 2005. Seismic Numerical Modeling for 3D Complex Media. Petroleum
  67. Industry Press, Beijing. ISBN 7-5021-4737-3.
  68. Parra, J.O., 1997. The transversely isotropic poroelastic wave equation in cluding the Biot and the
  69. squirt mechanisms: Theory and application. Geophysics, 62: 309-318.
  70. Pride, S.R., Berryman, J.G. and Harris, J.M., 2004. Seismic attenuation due to wave-induced flow.
  71. J. Geophys. Res., 109, BO1201: 1-19.
  72. Roden, J.A. and Gedney, S.D., 2000. Convolution PML (CPML): An efficient FDTD
  73. implementation of the CFS-PML for arbitrary media. Microwave Optic. Technol. Lett., 27:
  74. 334-339.
  75. Sheen, D.H., Tuncay, K., Baag, C.E. and Ortoleva, P.J., 2006. Parallel implementation of a
  76. velocity-stress staggered-grid finite-difference method for 2-D poroelastic wave propagation.
  77. Computers & Geosci., 32: 1182-1191.
  78. Sochacki, J., Kubichek, R., George, R., Fletcher, W.R. and Smithson, S., 1987. Absorbing
  79. boundary conditions and surface wave. Geophysics, 52: 60-71.
  80. Quarteroni, A., Tagliani, A. and Zampieri, E., 1998. Generalized Galerkin approximations of elastic
  81. waves with absorbing boundary conditions. Computer Meth. Appl. Mechan. Engineer., 163:
  82. 323-341.
  83. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  84. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference
  85. method. Geophysics, 51: 889-901.
  86. White, J.E., 1975. Computed seismic speeds and attenuation in rocks with partial gas saturation.
  87. Geophysics, 40: 224-232.
  88. Yang, D.H. and Zhang, Z.J., 2000. Effects of the Biot and the squirt flow coupling interaction on
  89. anisotropic elastic waves. Chin. Sci. Bull., 45: 333-339.
  90. Yang, D.H. and Zhang, Z.J., 2002. Poroelastic wave equation including the Biot/squirt mechanism
  91. and the solid/fluid coupling anisotropy. Wave Motion, 35: 223-245.
  92. Zahradnik, J., Moczo, P. and Hron, F. 1993. Testing four elastic finite-difference schemes for
  93. behavior at discontinuities. Bull. Seismol. Soc. Am., 83: 107-129.
  94. Zeng, Y.Q. and Liu, Q.H., 2001. A staggered-grid finite-difference method with perfectly matched
  95. layers for poroelastic wave equations. J. Acoust. Soc. Am., 109: 2571-2580.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing