A modified NAD algorithm with minimum numerical dispersion for simulation of anisotropic wave propagation

Yang, D., Song, G. and Zhang, J., 2010. A modified NAD algorithm with minimum numerical dispersion for simulation of anisotropic wave propagation. Journal of Seismic Exploration, 19: 21-42. Conventional explicit finite-difference methods for solving the elastic-wave equation suffer from numerical dispersion when too few samples per wavelength are used. A nearly analytic discrete method for suppressing the numerical dispersion was proposed recently by Yang et al. (2003a). In this paper, we present a modified algorithm of the nearly-analytic discrete method (NADM) for modelling seismic propagation in 2D anisotropic media. We also investigate the numerical dispersion of the modified algorithm using numerical examples and compare numerically the dispersion errors and the wavefield results computed using the modified algorithm against those of our previous method and other finite-difference (FD) methods. We show that, compared with the improved NADM, the modified algorithm for the 2D case can further minimize the numerical dispersion, while its computational cost and storage space are the same as those of our previous method. Wavefield snapshot for two-layer heterogeneous medium and three-component synthetic VSP seismograms in three-layer transversely isotropic media with a vertical symmetry axis, generated using the modified algorithm, are also reported. Numerical results demonstrate that the modified algorithm further reduces the numerical dispersion and source noise caused by the discretization of elastic-wave equations when too few samples per wavelength are used or when models have large velocity contrast and strong anisotropy.
- Alford, R.M., Kelly, K.R. and Boore, D.M., 1974. Accuracy of finite-difference modeling of the
- acoustic wave equation. Geophysics, 39: 834-842.
- Blanch, J.O. and Robertsson, J.O.A., 1997. A modified Lax-Wendroff correction for wave
- propagation in media described by Zener elements. Geophys. J. Int., 131: 381-386.
- Dablain, M.A., 1986. The application of high-order differencing to the scalar wave equation.
- Geophysics, 51: 54-66.
- Faria, E.L. and Stoffa, P.L., 1994. Finite-difference modelling in transversely isotropic media.
- Geophysics 59: 282-289.
- Fei, T. and Larner, K., 1995. Elimination of numerical dispersion in finite-difference modeling and
- migration by flux-corrected transport. Geophysics, 60: 1830-1842.
- Fornberg, B., 1990. High-order finite differences and pseudo-spectral method on staggered grids.
- SIAM J. Numeric. Analys., 27: 904-918.
- Holberg, O., 1987. Computational aspects of the choice of operator and sampling interval for
- numerical differentiation in large-scale simulation of wave phenomena. Geophys. Prosp., 35:
- 629-655.
- Huang, B.S., 1992. A program for two-dimensional seismic wave propagation by the
- pseudospectrum method. Comput. Geosci., 18: 289-307.
- Igel, H., Mora, P. and Riollet, B., 1995. Anisotropic wave propagation through finite-difference
- grids. Geophysics, 60: 1203-1216.
- Kelly, K., Ward, R., Treitel, S. and Alford, R., 1976. Synthetic seismograms: a finite-difference
- approach. Geophysics, 41: 2-27.
- Komatitsch, D., Barnes, C. and Tromp, J., 2000. Wave propagation near a fluid-solid interface: A
- spectral-element approach. Geophysics, 65: 623-631.
- Kosloff, D. and Baysal, E., 1982. Forward modeling by a Fourier method. Geophysics, 47:
- 1402-1412.
- Kosloff, D., Reshef, M. and Loewenthal, D., 1984. Elastic wave calculations by the Fourier
- method. Bull. Seismol. Soc. Am., 74: 875-891.
- Mizutani, H., Geller, R.J. and Takeuchi, N., 2000. Comparison of accuracy and efficiency of
- time-domain schemes for calculating synthetic seismograms. Phys. Earth Planet. Inter., 119:
- 75-97.
- Sei, A. and Symes, W., 1994. Dispersion analysis of numerical wave propagation and its
- computational consequences. J. Scient. Comput., 10: 1-27.
- Vichnevetsky, R., 1979. Stability charts in the numerical approximation of partial differential
- equations: a review. Math. Comput. Simul., 21: 170-177.
- Virieux, J., 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference
- method. Geophysics, 51: 889-901.
- Wang, S.Q., Yang, D.H. and Yang, K.D., 2002. Compact finite difference scheme for elastic
- equations. J. Tsinghua Univ. (Sci. & Tech.), 42: 1128-1131 (in Chinese).
- Yang, D.H., Liu, E., Zhang, Z.J. and Teng, J., 2002a. Finite-difference modelling in
- two-dimensional anisotropic media using a flux-corrected transport technique. Geophys. J.
- Internat., 148: 320-328.
- MODIFIED NAD ALGORITHM 41
- Yang, D.H., Teng, J.W., Zhang, Z.J. and Liu, E., 2003a. A nearly-analytic discrete method for
- acoustic and elastic wave equations in anisotropic media. Bull. Seismol. Soc. Am., 93:
- 882-890.
- Yang, D.H., Wang, S.Q., Zhang, Z.J. and Teng, J.W., 2003b. n-times absorbing boundary
- conditions for compact finite difference modeling of acoustic and elastic wave propagation
- in the 2-D TI Medium. Bull. Seismol. Soc. Am., 93: 2389-2401.
- Yang, D.H., Peng, J.M., Lu, M. and Terlaky, T., 2006. Optimal nearly analytic discrete
- approximation to the scalar wave equation. Bull. Seismol. Soc. Am., 96: 1114-1130.
- Yang, D.H., Song, G.J., Chen, S. and. Hou, B.Y., 2007a. An improved nearly analytical discrete
- method: An efficient tool to simulate the seismic response of 2-D porous structures. J.
- Geophys. Engin., 4: 70-82.
- Yang, D.H., Chen, S. and Li, J.Z., 2007b. A Runge-Kutta method using high-order interpolation
- approximation for solving 2D acoustic and elastic wave equations. J. Seismic Explor., 16:
- 331-353.
- Yang, K.D., Yang, D.H. and Wang, S.Q., 2002b. Numerical simulation by the staggered grid
- method for the high frequency limited BISQ equation. Oil Geophys. Prosp., 37: 463-468 (in
- Chinese).
- Zhang, Z.J., Wang, G.J. and Harris, J.M., 1999. Multi-component wavefield simulation in viscous
- extensively dilatancy anisotropic media. Phys. Earth Planet. Inter., 114: 25-38.
- Zheng, H.S. and Zhang, Z.J., 2005. Synthetic seismograms of nonlinear seismic waves in
- anisotropic media. Chinese J. Geophys., 48: 660-671 (in Chinese).
- Zheng, H.S., Zhang, Z.J. and Liu, E.R., 2006. Non-linear seismic wave propagation in anisotropic
- media using the flux-corrected transport technique. Geophys. J. Int., 165: 943-956.