ARTICLE

A modified NAD algorithm with minimum numerical dispersion for simulation of anisotropic wave propagation

DINGHUI YANG1 GUOJIE SONG2 JINHUA ZHANG3
Show Less
1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China. dhyang@math.tsinghua.edu.cn,
2 College of Sciences, Southwest Petroleum University, Chengdu 610500, P.R. China.,
3 Kunming Vocational and Technical College of Industry, Yunnan, P.R. China.,
JSE 2010, 19(1), 21–42;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Yang, D., Song, G. and Zhang, J., 2010. A modified NAD algorithm with minimum numerical dispersion for simulation of anisotropic wave propagation. Journal of Seismic Exploration, 19: 21-42. Conventional explicit finite-difference methods for solving the elastic-wave equation suffer from numerical dispersion when too few samples per wavelength are used. A nearly analytic discrete method for suppressing the numerical dispersion was proposed recently by Yang et al. (2003a). In this paper, we present a modified algorithm of the nearly-analytic discrete method (NADM) for modelling seismic propagation in 2D anisotropic media. We also investigate the numerical dispersion of the modified algorithm using numerical examples and compare numerically the dispersion errors and the wavefield results computed using the modified algorithm against those of our previous method and other finite-difference (FD) methods. We show that, compared with the improved NADM, the modified algorithm for the 2D case can further minimize the numerical dispersion, while its computational cost and storage space are the same as those of our previous method. Wavefield snapshot for two-layer heterogeneous medium and three-component synthetic VSP seismograms in three-layer transversely isotropic media with a vertical symmetry axis, generated using the modified algorithm, are also reported. Numerical results demonstrate that the modified algorithm further reduces the numerical dispersion and source noise caused by the discretization of elastic-wave equations when too few samples per wavelength are used or when models have large velocity contrast and strong anisotropy.

Keywords
modified NAD algorithm
numerical dispersion
wavefield simulation
seismic anisotropy
References
  1. Alford, R.M., Kelly, K.R. and Boore, D.M., 1974. Accuracy of finite-difference modeling of the
  2. acoustic wave equation. Geophysics, 39: 834-842.
  3. Blanch, J.O. and Robertsson, J.O.A., 1997. A modified Lax-Wendroff correction for wave
  4. propagation in media described by Zener elements. Geophys. J. Int., 131: 381-386.
  5. Dablain, M.A., 1986. The application of high-order differencing to the scalar wave equation.
  6. Geophysics, 51: 54-66.
  7. Faria, E.L. and Stoffa, P.L., 1994. Finite-difference modelling in transversely isotropic media.
  8. Geophysics 59: 282-289.
  9. Fei, T. and Larner, K., 1995. Elimination of numerical dispersion in finite-difference modeling and
  10. migration by flux-corrected transport. Geophysics, 60: 1830-1842.
  11. Fornberg, B., 1990. High-order finite differences and pseudo-spectral method on staggered grids.
  12. SIAM J. Numeric. Analys., 27: 904-918.
  13. Holberg, O., 1987. Computational aspects of the choice of operator and sampling interval for
  14. numerical differentiation in large-scale simulation of wave phenomena. Geophys. Prosp., 35:
  15. 629-655.
  16. Huang, B.S., 1992. A program for two-dimensional seismic wave propagation by the
  17. pseudospectrum method. Comput. Geosci., 18: 289-307.
  18. Igel, H., Mora, P. and Riollet, B., 1995. Anisotropic wave propagation through finite-difference
  19. grids. Geophysics, 60: 1203-1216.
  20. Kelly, K., Ward, R., Treitel, S. and Alford, R., 1976. Synthetic seismograms: a finite-difference
  21. approach. Geophysics, 41: 2-27.
  22. Komatitsch, D., Barnes, C. and Tromp, J., 2000. Wave propagation near a fluid-solid interface: A
  23. spectral-element approach. Geophysics, 65: 623-631.
  24. Kosloff, D. and Baysal, E., 1982. Forward modeling by a Fourier method. Geophysics, 47:
  25. 1402-1412.
  26. Kosloff, D., Reshef, M. and Loewenthal, D., 1984. Elastic wave calculations by the Fourier
  27. method. Bull. Seismol. Soc. Am., 74: 875-891.
  28. Mizutani, H., Geller, R.J. and Takeuchi, N., 2000. Comparison of accuracy and efficiency of
  29. time-domain schemes for calculating synthetic seismograms. Phys. Earth Planet. Inter., 119:
  30. 75-97.
  31. Sei, A. and Symes, W., 1994. Dispersion analysis of numerical wave propagation and its
  32. computational consequences. J. Scient. Comput., 10: 1-27.
  33. Vichnevetsky, R., 1979. Stability charts in the numerical approximation of partial differential
  34. equations: a review. Math. Comput. Simul., 21: 170-177.
  35. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference
  36. method. Geophysics, 51: 889-901.
  37. Wang, S.Q., Yang, D.H. and Yang, K.D., 2002. Compact finite difference scheme for elastic
  38. equations. J. Tsinghua Univ. (Sci. & Tech.), 42: 1128-1131 (in Chinese).
  39. Yang, D.H., Liu, E., Zhang, Z.J. and Teng, J., 2002a. Finite-difference modelling in
  40. two-dimensional anisotropic media using a flux-corrected transport technique. Geophys. J.
  41. Internat., 148: 320-328.
  42. MODIFIED NAD ALGORITHM 41
  43. Yang, D.H., Teng, J.W., Zhang, Z.J. and Liu, E., 2003a. A nearly-analytic discrete method for
  44. acoustic and elastic wave equations in anisotropic media. Bull. Seismol. Soc. Am., 93:
  45. 882-890.
  46. Yang, D.H., Wang, S.Q., Zhang, Z.J. and Teng, J.W., 2003b. n-times absorbing boundary
  47. conditions for compact finite difference modeling of acoustic and elastic wave propagation
  48. in the 2-D TI Medium. Bull. Seismol. Soc. Am., 93: 2389-2401.
  49. Yang, D.H., Peng, J.M., Lu, M. and Terlaky, T., 2006. Optimal nearly analytic discrete
  50. approximation to the scalar wave equation. Bull. Seismol. Soc. Am., 96: 1114-1130.
  51. Yang, D.H., Song, G.J., Chen, S. and. Hou, B.Y., 2007a. An improved nearly analytical discrete
  52. method: An efficient tool to simulate the seismic response of 2-D porous structures. J.
  53. Geophys. Engin., 4: 70-82.
  54. Yang, D.H., Chen, S. and Li, J.Z., 2007b. A Runge-Kutta method using high-order interpolation
  55. approximation for solving 2D acoustic and elastic wave equations. J. Seismic Explor., 16:
  56. 331-353.
  57. Yang, K.D., Yang, D.H. and Wang, S.Q., 2002b. Numerical simulation by the staggered grid
  58. method for the high frequency limited BISQ equation. Oil Geophys. Prosp., 37: 463-468 (in
  59. Chinese).
  60. Zhang, Z.J., Wang, G.J. and Harris, J.M., 1999. Multi-component wavefield simulation in viscous
  61. extensively dilatancy anisotropic media. Phys. Earth Planet. Inter., 114: 25-38.
  62. Zheng, H.S. and Zhang, Z.J., 2005. Synthetic seismograms of nonlinear seismic waves in
  63. anisotropic media. Chinese J. Geophys., 48: 660-671 (in Chinese).
  64. Zheng, H.S., Zhang, Z.J. and Liu, E.R., 2006. Non-linear seismic wave propagation in anisotropic
  65. media using the flux-corrected transport technique. Geophys. J. Int., 165: 943-956.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing