ARTICLE

Azimuthal Tau-p analysis in a weak orthorhombic medium

SAMIK SIL MRINAL K. SEN
Show Less
University of Texas at Austin, Institute for Geophysics, J.J. Pickle Research Campus, Bldg. 196, 10100 Burnet Road (R2200), Austin, TX 78758-4445, U.S.A.,
JSE 2009, 18(1), 81–91;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Sil, S. and Sen, M.K., 2009. Azimuthal Tau-p analysis in a weak orthorhombic medium. Journal of Seismic Exploration, 18: 81-91. Nine elastic coefficients are needed to describe a traveltime curve in an orthorhombic medium. The problem of estimating all the elastic parameters by iterative fitting of traveltime data from a single azimuth recording is highly non-unique. More anisotropic parameters in an orthorhombic medium than in a transversely isotropic medium make the parameter estimation process more challenging. A solution can possibly be achieved by simultaneous fitting of multiple azimuth travel time data. However that would require picking travel time and accurate estimation will require numerical ray tracing for multi-layered media. To circumvent these difficulties we propose analysis of plane wave transformed azimuthal gathers interactively using a single azimuth data at a time and a new P-wave delay time equation which is a function of two parameters at each azimuth. Results from independently estimated multi-azimuth gathers can be combined to estimate anisotropic parameters. Azimuthal 7-p analysis also avoids numerical ray tracing resulting in a rapid algorithm. We demonstrate the applicability of our method using a set of P-wave synthetic seismograms from a multi-layered medium consisting of isotropic and orthorhombic layers. Azimuth dependent anisotropy parameters are derived by delay time fitting and NMO correction. The reflections from the bottom interface of an isotropic layer with an anisotropic overburden show apparent anisotropic travel time behavior which is easily accounted for by our layer-stripping based azimuthal NMO analysis.

Keywords
anisotropy
delay time
NMO
numerical approximation
orthorhombic
azimuth
References
  1. Al-Dajani, A., Tsvankin, I. and Tokséz, M.N., 1998. Non-hyperbolic reflection moveout for
  2. azimuthally anisotropic media. Expanded Abstr., 68th Ann. Internat. SEG Mtg., New
  3. Orleans: 1479-1482.
  4. Bakulin, A., Grechka, V. and Tsvankin, I., 2000. Estimation of fracture parameters from reflection
  5. seismic data - Part II: Fractured models with orthorhombic symmetry. Geophysics, 65:
  6. 1803-1817.
  7. Cohen, J.K., 1997. Analytic study of the effective parameters for determination of the NMO velocity
  8. function in transversely isotropic media. Geophysics, 62: 1855-1866.
  9. Douma, H. and Van der Baan, M., 2008. Rational interpolation of qP traveltimes for
  10. semblance-based anisotropy estimation in layered VTI media. Geophysics, 73:
  11. D53-D62.
  12. Grechka, V., Theophanis, S. and Tsvankin, I., 1999. Joint inversion of P- and PS-waves in
  13. orthorhombic media: Theory and a physical-modeling study. Geophysics, 64: 146-161.
  14. Mah, M. and Schimtt, D.R., 2001. Experimental determination of the elastic coefficients of an
  15. orthorhombic material. Geophysics, 66: 1217-1225.
  16. Schoenberg, M. and Helbig, K., 1997. Orthorhombic media: Modeling elastic wave behavior in a
  17. vertically fractured earth. Geophysics, 62: 1954-1974.
  18. Sen, M.K. and Mukherjee, A., 2003. Tau-p analysis in transversely isotropic media. Geophys. J.
  19. Internat., 154: 647-658.
  20. Sil, S. and Sen, M.K., 2007. Azimuthal tau-p analysis in HTI media. Expanded Abstr., 77th Ann.
  21. Internat. SEG Mtg., San Antonio: 179-182.
  22. Sil, S. and Sen, M.K., 2008. Azimuthal tau-p analysis in anisotropic media. Geophys. J. Internat.,
  23. 175: 587-597.
  24. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  25. Tsvankin, I., 1996. P-wave signatures and notation for transversely isotropic media: An overview.
  26. Geophysics, 61: 467-483.
  27. Tsvankin, I., 1997. Anisotropic parameters and P-wave velocity for orthorhombic media.
  28. Geophysics, 62: 1292-1309.
  29. Tsvankin, I., 2001. Seismic signatures and analysis of reflection data in anisotropic media. Elsevier
  30. Science Publ. Co., Inc., New York.
  31. van der Baan, M. and Kendall, J.-M., 2003. Traveltime and conversion-point computations and
  32. parameter estimation in layered, anisotropic media by tau-p transform. Geophysics, 68:
  33. 210-224.
  34. Vasconcelos, I. and Tsvankin, I., 2006. Nonhyperbolic moveout inversion of wide-azimuth P-wave
  35. data for orthorhombic media. Geophys. Prosp., 54: 535-552.
  36. Xu, X. and Tsvankin, I., 2006. Azimuthal AVO analysis with anisotropic spreading correction: A
  37. synthetic study. The Leading Edge, 25: 1336-1342.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing