ARTICLE

Space-time-domain Gaussian beam migration in VTI media based on the upward ray tracing and its application in land field data

DONGLIN ZHANG1,2 JIANPING HUANG1,2 JIDONG YANG1,2 BIN ZHOU3 JIANFENG ZHANG3 QINGYANG LI4
Show Less
1 School of Geosciences, China University of Petroleum (East China), Qingdao 266580, P.R. China.,
2 Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, P.R. China.,
3 Geophysical China Oilfield Services Limited, Tianjing 300459, P.R. China.,
4 Geophysical Exploration Research Institute of Zhongyuan Oilfield Company, Puyang, 457001, P.R. China.,
JSE 2022, 31(6), 545–562;
Submitted: 22 March 2022 | Accepted: 10 September 2022 | Published: 1 December 2022
© 2022 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhang, D.L., Huang, J.P., Yang, J.D., Zhou, B., Zhang, J.F. and Li, Q.Y., 2022. Space-time-domain Gaussian beam migration in VTI media based on the upward ray tracing and its application in land field data. Journal of Seismic Exploration, 31: 545-562. Gaussian beam migration (GBM) method is an efficient and adaptable imaging tool, but the traditional GBM method may produce some false imaging in some layers due to the inaccurate ray tracing in the construction of reverse wavefields. Firstly, the reverse wavefields are constructed by using the upward ray tracing strategy. Then, we derive the space-time-domain GBM formula in acoustic medium based on the cross-correlation imaging condition. Finally, taking in account the anisotropic characteristics, we use the anisotropic ray tracing theory to implement a space-time-domain GBM approach in VTI media. After testing for the anisotropic graben and diffractor models as well as a land field data, compared with the imaging results in space-time-domain isotropic GBM, we get the following conclusions: 1) The diffraction energy of the graben model is more convergent in the low layers; 2) Our method can clearly image the diffracting points of the diffractor model; 3) For the field data, the image resolution is obviously improved, the fault planes are clearer, and the image amplitude in the left part of the anticline is more balanced.

Keywords
Gaussian beam migration
upward ray tracing
space-time-domain
VTI
anisotropic
References
  1. Alkhalifah, T., 1995. Gaussian beam depth migration for anisotropic media. Geophysics,60: 1474-1484.
  2. Bai, M., Chen, X., Wu, J., Liu, G., Chen, Y., Chen, H. and Li, Q., 2016. Q-compensatedmigration by Gaussian beam summation method. J. Geophys. Engineer., 13: 35-
  3. Cerveny, V., 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media._ Geophys. J. Internat., 29: 1-13.
  4. Cerveny, V., Popov, M.M. and PSenéik, I., 1982. Computation of wave fields ininhomogeneous media-Gaussian beam approach. Geophys. J. Internat., 70: 109-
  5. Gray, S.H. and Bleistein, N., 2009. True-amplitude Gaussian-beam migration.Geophysics, 74(2): S11-S23.
  6. Han, J., Wang, Y., Xing, Z. and Lu, J., 2014. Gaussian beam prestack depth migration ofconverted wave in TI media. J. Appl. Geophys., 109: 7-14.
  7. Han, J., Wang, Y., Yu, C. and Chen, P., 2017. Angle-domain common-image gathersfrom anisotropic Gaussian beam migration and its application to anisotropy-inducedimaging errors analysis. J. Earth Syst. Sci., 126: 1-9.
  8. Han, J., Li, Q., Gu, B., Yan, J. and Zhang, H., 2020. 2D anisotropic multicomponent
  9. Gaussian-beam migration under complex surface conditions. Geophysics, 85(2):-S102.
  10. Han, J., Liu, Z., Wang, Y., Yan, J. and Gu, B., 2021. 2D anisotropic nonslant stack beammigration for multicomponent seismic data. Arab. J. Geosci., 14(13): 1-9.
  11. Hanyga, A., 1986. Gaussian beams in anisotropic elastic media. Geophys. J. Internat.,85: 473-504.
  12. Hill, N.R., 1990. Gaussian beam migration. Geophysics, 55: 1416-1428.
  13. Hill, N.R., 2001. Prestack Gaussian-beam depth migration. Geophysics, 66: 1240-1250.
  14. Hu, Z.D., Li, Q.D., Han, L.H., Liu, W., Huang, J.P., Yang, J.D. and Li, Z.C., 2020.
  15. Elastic space-time Gaussian beam method for seismic depth imaging. Chin. J.Geophys., 63: 652-665 (in Chinese).
  16. Huang, J., Yang, J., Liao, W., Wang, X. and Li, Z., 2016. Common-shot Fresnel beammigration based on wave-field approximation in effective vicinity under complextopographic conditions. Geophys. Prosp., 64: 554-570.
  17. Huang, J., Yuan, M., Zhang, Q., Jia, L., Li, Z., Li, J. and Zhao, S., 2017. Reverse timemigration with elastodynamic Gaussian beams. J. Earth Sci., 28: 695-702.
  18. Katchalov, A.P. and Popov, M.M., 1988. Gaussian beam methods and theoreticalseismograms. Geophys. J. Internat., 93: 465-475.
  19. Li, H., Wang, H.Z., Feng, B., Hu. Y. and Zhang, C., 2014. Efficient pre-stack depthmigration method using characteristic Gaussian packets. Chin. J. Geophys., 57:2258-2268 (in Chinese).
  20. Li, Z.C., Liu, Q., Han, W.G., Zhang, M., Wang, T.Q., Xiao, J.E. and Wu, J.H., 2018.
  21. Angle domain converted wave Gaussian beam migration in VTI media. Chin. J.Geophys., 61: 1471-1481 (in Chinese).
  22. Nowack, R.L., 2011. Dynamically focused Gaussian beams for seismic imaging.Internat. J. Geophys., 2011: 1-8.
  23. Popov, M.M., 1982. A new method of computation of wave fields using Gaussianbeams. Wave Motion, 4: 85-97.
  24. Popov, M.M., Semtchenok, N.M., Popov, P.M. and Verdel, A.R., 2010. Depth migrationby the Gaussian beam summation method. Geophysics, 75(2): -S93.
  25. Protasov, M.I. and Tcheverda, V.A., 2012. True amplitude elastic Gaussian beamimaging of multicomponent walkaway vertical seismic profiling data. Geophys.Prosp., 60: 1030-1042.
  26. Yang, J.D., Huang, J.P., Wang, X. and Li, Z.C., 2015. An amplitude-preserved adaptivefocused beam seismic migration method. Petrol. Sci., 12: 417-427.
  27. Yang, J. and Zhu, H., 2018. A practical data-driven optimization strategy for Gaussianbeam migration. Geophysics, 83(1): S81-S92.
  28. Yuan, M., Huang, J., Liao, W. and Jiang, F., 2017. Least-squares Gaussian beammigration. J. Geophys. Engineer., 14: 184-196.
  29. Yue,, Y.B., Li, Z.C., Zhang, P., Zhou, X.F. and Qin, N., 2010. Prestack Gaussian beamdepth migration under complex surface conditions. Appl. Geophys., 7: 143-148.
  30. Yue, Y.B., Li, Z.C., Qian, Z.P., Zhang, J.L., Sun, P.Y. and Ma, G.K., 2012.
  31. Amplitude-preserved Gaussian beam migration under complex topographicconditions. Chin. J. Geophys., 55: 1376-1383 (in Chinese).
  32. Yue, Y., Liu, Y., Li, Y. and Shi, Y., 2021. Least-squares Gaussian beam migration in_ _ viscoacoustic media. Geophysics, 86(1): S17-S28.
  33. Zaéek, K., 2006. Decomposition of the wave field into optimized Gaussian packets.Studia Geophys. Geodaet., 50: 367-380.
  34. Zhu, T., Gray, S.H. and Wang, D., 2007. Prestack Gaussian-beam depth migration inanisotropic media. Geophysics, 72(3): 3-S138.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing