ARTICLE

Efficient seismic numerical modelling technique using the YOLOv2-based expanding domain method

DAWOON LEE1 SEUNGPYO CHOI2 JONGHYUN LEE3 WOOKEEN CHUNG4
Show Less
4 Department of Ocean Energy and Resources Engineering, Korea Maritime and Ocean University, Busan, South Korea.,
2 Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology (OST) School, Korea Maritime and Ocean University, Busan, South Korea,
3 Department of Civil and Environmental Engineering and Water Resources Research Center, University of Hawai’i at Manoa, Honolulu, HI 96822, U.S.A.,
JSE 2022, 31(5), 425–449;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

D.W. Lee, S.P. Choi, J.H. Lee and W.K. Chung. Efficient seismic numerical modeling technique using the YOLOv2-based expanding domain method. Journal of Seismic Exploration, 31: 425-449. Wave equation-based seismic modeling has the advantage of simulating the exact full- wave propagation. However, it requires a great amount of computational resources, which becomes prohibitive when both the modeling domain size and the number of the time samples increase. Therefore, much research has been performed to enhance the computational efficiency of seismic numerical modeling. The expanding domain method is such one technique that improves the computational efficiency by identifying the domain extent where the wave propagation has not reached and excluding these domains from the calculation. In this work, we propose a new deep-learning based method that guide the determination of the computational domain. In order to establish the computational domain where the wave propagates from the snapshots. the deep learning-based obiect detection was emploved. The deep learning obiect detector used has two main components. The first one is a structure for the feature extraction layers based on ResNet-50. The second one is a structure for the detection of the wave propagation domain based on the You Only Look Once method, version 2 (YOLOv2). After the training, validation and test for the YOLOv2 obiect detector, the computational efficiency of our proposed method was compared with that of the widely used amplitude comparison-based expanding domain method. It was demonstrated that the computational efficiency of the YOLOv2 method was better when the number of modeling grids was large, and the efficiency in the largest number of grids was about 25.1 %.

Keywords
seismic numerical modeling
computational efficiencv
expanding domain method
deep learning object detection
YOLOv2
References
  1. Abdelkhalek, R., Calandra, H., Coulaud, O., Roman, J. and Latu, G., 2009. Fast seismic
  2. modeling and reverse time migration on a GPU cluster. 2009 Internat. Conf. High
  3. Performance Comput. Simulat.: 36-43.
  4. Alkhalifah, T., 2000. An acoustic wave equation for anisotropic media, Geophysics, 65:
  5. 1239-1250.
  6. Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F. and Wyatt, K., 1994. SEG/EAEG
  7. 3-D modeling project, 2nd update. The Leading Edge, 13: 949-952.
  8. Barthakur, M. and Sarma, K.K., 2019. Semantic segmentation using K-means clustering
  9. and deep learning in satellite image. 22nd Internat. Conf. Innovat. Electronics,
  10. Signal Process. Communicat. (IESC): 192-196.
  11. Carcione, J.M., Herman, G.C. and Ten Kroode, A.P.E., 2002. Seismic modelling,
  12. Geophysics, 67: 1304-1325.
  13. Carcione, J.M., Kosloff, D. and Kosloff, R., 1988. Viscoacoustic wave propagation
  14. simulation in the earth, Geophysics, 53: 769-777.
  15. Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M., 1985. A nonreflecting boundary
  16. condition for discrete acoustic and elastic wave equations, Geophysics, 50: 705-708.
  17. Chassagnon, G., Vakalopolou, M., Paragios, N. and Revel, M.P., 2020. Deep learning:
  18. definition and perspectives for thoracic imaging. Eur. Radiol., 30: 2021-2030.
  19. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L., 2009. Imagenet: A large-
  20. scale hierarchical image database. 2009 IEEE Conf. Comput. Vision Patt. Recognit.,
  21. 248-255.
  22. Drossaert, F.H. and Giannopoulos, A., 2007. A nonsplit complex frequency-shifted PML
  23. based on recursive integration for FDTD modeling of elastic waves. Geophysics,
  24. 72(2): T9-T17.
  25. Etgen, J.T. and O’Brien, M.J., 2007. Computational methods for large-scale 3D acoustic
  26. finite-difference modeling: A tutorial. Geophysics, 72(5): SM223-SM230.
  27. Fowler, P.J. and King, R., 2011. Modeling and reverse time migration of orthorhombic
  28. pseudo-acoustic P-waves. Expanded Abstr., 81st. Ann. Internat. SEG Mtg., San
  29. Antonio: 190-195.
  30. Geiger, A., Lenz, P., Stiller, C. and Urtasun, R., 2013. Vision meets robotics: The kitti
  31. dataset. Internat. J. Rob. Res., 32: 1231-1237.
  32. Girshick, R., 2015. Fast R-CNN. Proc. IEEE Internat. Conf. Comput. Vis.: 1440-1448.
  33. Girshick, R., Donahue, J., Darrell, T. and Malik, J., 2014. Rich feature hierarchies for
  34. accurate object detection and semantic segmentation. Proc. IEEE Conf. Comput.
  35. Vis. Patt. Recognit.. 580-587.
  36. Graves, R.W., 1996. Simulating seismic wave propagation in 3D elastic media using
  37. staggered-grid finite differences. Bull. Seismol. Soc. Am., 86: 1091-1106.
  38. Ha, W. and Shin, C., 2012. Efficient Laplace-domain modeling and inversion using an
  39. axis transformation technique. Geophysics, 77(4): R141-R148.
  40. He, K., Gkioxari, G., Dollar, P. and Girshick, R., 2017. Mask R-CNN. Proc. IEEE
  41. Internat. Conf. Comput. Vis. (ICCV): 2961-2969.
  42. He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image
  43. recognition. Proc. IEEE Conf. Comput. Vis. Patt. Recognit.: 770-778.
  44. Itakura, K. and Hosoi, F., 2020. Automatic tree detection from three-dimensional images
  45. reconstructed from 360 spherical camera using YOLOv2. Remote Sens., 12: 988.
  46. Jun, H., Jou, H.T., Kim, C.H., Lee, S.H. and Kim, H.J., 2020. Random noise attenuation
  47. of sparker seismic oceanography data with machine learning, Ocean Sci., 16: 1367-
  48. Kim, S., Seol, S.J., Byun, J., Park, J. and Oh, S., 2020. Extraction of diffraction events
  49. from seismic data using deep learning-based approach. Expanded Abstr., 90th Ann.
  50. Internat. SEG Mtg., Houston: 2840-2844.
  51. Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv
  52. preprint arXiv: 1412.6980.
  53. Komatitsch, D. and Tromp, J., 1999. Introduction to the spectral element method for
  54. three-dimensional seismic wave propagation, Geophys. J. Internat., 139: 806-822.
  55. Levander, A.R., 1988. Fourth-order finite-difference P-SV seismograms, Geophysics,
  56. 53: 1425-1436.
  57. Li, S., Yang, C., Sun, H. and Zhang, H., 2019. Seismic fault detection using an encoder—
  58. decoder convolutional neural network with a small training set. J. Geophys.
  59. Engineer., 16: 175-189.
  60. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P. and
  61. Zitnick, C.L., 2014. Microsoft COCO: Common objects in context. In: Fleet, D.,
  62. Pajdla, T., Schiele, B. and Tuytelaars ,T. (Eds.), European Conf. Comput. Vis.,
  63. Lecture Notes in Computer Science, Vol. 8693. Springer Verlag, Cham.: 740-755.
  64. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg, A.C., 2016.
  65. SSD: Single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
  66. (Eds.), European Conf. Comput, Vis.. Springer Verlag, Cham.: 21-37.
  67. Loey, M., Manogaran, G., Taha, M.H.N. and Khalifa, N.E.M., 2021. Fighting against
  68. COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for
  69. medical face mask detection. Sustain. Cities Soc., 65: 102600.
  70. Martin, G.S., Wiley, R. and Marfurt, K.J., 2006. Marmousi-2: An elastic upgrade for
  71. ___Marmousi. The Leading. Edge, 25: 156-166.
  72. Ozdenvar, T. and McMechan, G.A., 1997. Algorithms for staggered-grid computations
  73. for poroelastic, elastic, acoustic, and scalar wave equations, Geophys. Prosp., 45:
  74. 403-420.
  75. Padilla, R., Netto, S.L. and da Silva, E.A., 2020. A survey on performance metrics for
  76. object-detection algorithms, In: Internat. Conf. Systems, Signals Image Process.
  77. (IWSSIP): 237-242.
  78. Petrov, I.B. and Khokhlov, N.I., 2014. Modeling 3D seismic problems using high-
  79. performance computing systems, Mathemat. Models Comput. Simulat., 6: 342-350.
  80. Pochet, A., Diniz, P.H., Lopes, H. and Gattass, M., 2018. Seismic fault detection using
  81. convolutional neural networks trained on synthetic poststacked amplitude maps.
  82. IEEE Geosci. Remote Sens. Lett., 16: 352-356.
  83. Ramsden, C., Bennett, G. and Long, A., 2005. High-resolution 3D seismic imaging in
  84. practice. The Leading Edge, 24: 423-428.
  85. Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You only look once:
  86. Unified, real-time object detection. IEEE Conf. Comput. Vis. Patt. Recognit.
  87. (CVPR): 779-788.
  88. Redmon, J. and Farhadi, A., 2017. YOLO9000: better, faster, stronger. IEEE Conf.
  89. Comput. Vis. Patt. Recognit. (CVPR): 7263-7271.
  90. Redmon, J. and Farhadi, A., 2018. YOLOv3: An incremental improvement, arXiv
  91. preprint arXiv: 1804.02767.
  92. Robertsson, J.O., Blanch, J.O. and Symes, W.W., 1994. Viscoelastic finite-difference
  93. modelling, Geophysics, 59: 1444-1456.
  94. Ryu, D., Kim, A. and Ha, W., 2015. Expanding domain method for 3D time-Laplace-
  95. domain hybrid modelling, Geosystem Eng., 18 (5), 259-265.
  96. Sadak, F., Saadat, M. and Hajiyavand, A.M., 2020. Real-time deep learning-based image
  97. recognition for applications in automated positioning and injection of biological
  98. cells, Comput. Biol. Med., 125: 103976.
  99. Santos, J.E., Douglas Jr., J., Morley, M.E. and Lovera, O.M., 1988. Finite element
  100. methods for a model for full waveform acoustic logging, IMA J. Numer. Anal., 8:
  101. 415-433.
  102. Siahkoohi, A., Louboutin, M. and Herrmann, F.J., 2019. Neural network augmented
  103. wave-equation simulation. arXiv preprint arXiv:1910.00925.
  104. Suh, S. and Wang, B., 2011. Expanding domain methods in GPU based TTI reverse time
  105. migration. Expanded Abstr., 81st. Ann. Internat. SEG Mtg., San Antonio: 3460-
  106. Szegedy, C., Toshev, A. and Erhan, D., 2013. Deep neural networks for object detection.
  107. Advan. Neural Informat. Process. Syst., 1-9.
  108. Tang, X. and Shao, Q., 2013. Numerical simulation on seismic liquefaction by adaptive
  109. mesh refinement due to two recovered fields in error estimation. Soil Dynam.
  110. Earthq. Engineer., 49: 109-121.
  111. Vidale, J.E., 1990. Finite-difference calculation of traveltimes in three dimensions.
  112. Geophysics, 55: 521-526.
  113. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-
  114. difference method. Geophysics, 51: 889-901.
  115. Vrolijk, J.W. and Blacquiére, G., 2021. Source deghosting of coarsely-sampled common-
  116. receiver data using a convolutional neural network. Geophysics, 86(3): V185-V196.
  117. Wang, B., Zhang, N., Lu, W., and Wang, J., 2019. Deep-learning-based seismic data
  118. interpolation: A preliminary result. Geophysics, 84(1), V11-V20
  119. Womg, A., Shafiee, M.J., Li, F. and Chwyl, B., 2018. Tiny SSD: A tiny single-shot
  120. detection deep convolutional neural network for real-time embedded object
  121. detection, 2018 15th Conference on Computer and Robot Vision (CRV), 95-101.
  122. Yang, F. and Ma, J., 2019. Deep-learning inversion: A next-generation seismic velocity
  123. model building method. Geophysics, 84(4), R583-R599.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing