ARTICLE

Seismic random noise suppression using denoising autoencoder

HUI SONG MENGHUA FANG CHENG ZHOU HOUQIANG GAO
Show Less
Sinopec Geophysical Research Institute, Jiangning District, Nanjing 211103, P.R. China,
JSE 2022, 31(3), 203–218;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Song, H., Fang, M.H., Zhou, C. and Gao, H.Q., 2022. Seismic random noise suppression using denoising autoencoder. Journal of Seismic Exploration, 31: 203-218. In the seismic data acquisition phase, random noise will inevitably be introduced as undesirable components, which is not conducive to subsequent seismic signal processing and imaging tasks. In this article, we propose a denoising framework based on denoising autoencoder (DAE) for seismic random noise suppression. DAE can directly reconstruct noise-free seismic data from noisy seismic data in an unsupervised learning manner. The entire seismic data reconstruction requires three phases: corrupting phase, encoding phase, and decoding phase. In the corrupting phase, the original input is randomly corrupted, which helps the designed network to capture robust features. In the encoding phase, the corrupted input is encoded as a compressed representation that contains the important content of the seismic data. In the decoding stage, the compressed representation is decoded into reconstructed data. We choose the mean square error as the loss function, which is minimized by the back propagation algorithm to update the network parameters. The application of synthetic and real seismic data proves the effectiveness of the proposed method in suppressing seismic random noise.

Keywords
seismic data
random noise
unsupervised learning
denoising autoencoder
References
  1. Abma, R. and Claerbout, J., 1995. Lateral prediction for noise attenuation by t-x and f-x
  2. techniques. Geophysics, 60(6): 1887-1896.
  3. Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical mode
  4. decomposition predictive filtering. Geophysics, 79(3): V81-V91.
  5. Chen, Y., Ma, J. and Fomel, S., 2016a. Double sparsity dictionary for seismic noise
  6. attenuation. Geophysics, 81(2): V103-V116.
  7. Chen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. and Gan, S., 2016b.
  8. Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-
  9. reduction method. Geophys. J. Internat., 206(3): 1695-1717.
  10. Chen, Y., Zhang, M., Bai, M. and Chen, W., 2019. Improving the signal-to-noise ratio of
  11. seismological datasets by unsupervised machine learning. Seismol. Res. Lett., 90(4):
  12. 1552-1564.
  13. Deighan, A. and Watts, D., 1997. Ground-roll suppression using the wavelet transform.
  14. Geophysics, 62(6): 1896-1903.
  15. Gao, Z., Pan, Z. and Gao, J., 2016. Multimutation differential evolution algorithm and its
  16. application to seismic inversion. IEEE Transact. Geosci. Remote Sens., 54(6): 3626-
  17. Herrmann, F., Boniger, U. and Verschuur, D., 2007. Non-linear primary-multiple
  18. separation with directional curvelet frames. Geophys. J. Internat., 170(2): 781-799.
  19. Herrmann, F. and Hennenfent, G., 2008. Non-parametric seismic data recovery with
  20. curvelet frames. Geophys. J. Internat., 173(1): 233-248.
  21. Kazemi, N., Bongajum, E. and Sacchi, M., 2016. Surface-consistent sparse multichannel
  22. blind deconvolution of seismic signals. IEEE Transact. Geosci. Remote Sens., 54(6):
  23. 3200-3207.
  24. Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic optimization. CoRR,
  25. abs/1412.6980.
  26. Lin, H., Li, Y., Yang, B. and Ma, H., 2013. Random denoising and signal nonlinearity
  27. approach by time-frequency peak filtering using weighted frequency reassignment.
  28. Geophysics, 78(6): V229-V237.
  29. Liu, W., Cao, S., Jin, Z., Wang, Z. and Chen, Y., 2018. A novel hydrocarbon detection
  30. approach via high-resolution frequency-dependent AVO inversion based on
  31. variational mode decomposition. IEEE Transact. Geosci. Remote Sens., 56(4): 2007-
  32. Oropeza, V. and Sacchi, M., 2011. Simultaneous seismic data denoising and
  33. reconstruction via multichannel singular spectrum analysis. Geophysics, 76(3): V25-
  34. V32.
  35. Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Chen, W. and Chen, Y., 2017. Data-driven
  36. multitask sparse dictionary learning for noise attenuation of 3D seismic data.
  37. Geophysics, 82(6): V385-V396.
  38. Song, H., Chen, W., Zhang, H., Wang, Y. and Xue, Y., 2020. Sandstone porosity
  39. prediction based on gated recurrent units. J. Seismic Explor., 29(4): 371-388.
  40. Wu, X., Liang, L., Shi, Y. and Fomel, S., 2019. Faultseg3D: Using synthetic data sets to
  41. train an end-to-end convolutional neural network for 3D seismic fault segmentation.
  42. Geophysics, 84(3): IM35-IM45.
  43. Yu, S., Ma, J. and Wang, W., 2019. Deep learning for denoising. Geophysics, 84(6):
  44. V333-V350.
  45. Yuan, S., Liu, J., Wang, S., Wang, T. and Shi, P., 2018. Seismic waveform classification
  46. and first-break picking using convolution neural networks. IEEE Geosci. Remote
  47. Sens. Lett., 15(2): 272-276.
  48. Zhang, M., Liu, Y., Bai, M. and Chen, Y., 2019. Seismic noise attenuation using
  49. unsupervised sparse feature learning. IEEE Transact. Geosci. Remote Sens., 57(12):
  50. 9709-9723.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing