ARTICLE

An efficient automatic Curvelet-Contourlet fault detection method using fuzzy entropy

MANA GHANAVATI NAVID SHAD MANAMAN
Show Less
Sahand University of Technology, Department of Mining Engineering, Tabriz, Iran,
JSE 2022, 31(3), 219–238;
Submitted: 29 September 2021 | Accepted: 17 January 2022 | Published: 1 June 2022
© 2022 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ghanavati, M. and Shad Manaman, N., 2022. An efficient automatic Curvelet-Contourlet fault detection method using fuzzy entropy. Journal of Seismic Exploration, 31: 219-238. Accurate detection of faults in seismic data can affect various disciplines such as subsurface geological studies, petroleum exploration, drilling strategies and production. Still, it is in general a manual and time consuming task. Therefore, bringing automatic methods to this field which can accurately extract useful information from seismic images and locate faults would be valuable. In this paper we propose a novel method for automatic seismic fault detection using combination of multiresolution multidirectional algorithms and fuzzy entropy theory. The paper employs Curvelet (CV) and Contourlet (CN) transforms for feature extraction from transformed domain and to capture both detail and smooth information content of the data. The proposed framework introduces a novel feature space by extracting features in temporal domain using CN transform to capture smooth contour information and CV transform to capture details along the curve features in order to improve detection performance. It also introduces an automatic feature selection algorithm using differentiation which highlights fault information, to isolate faults from reflectors adaptively. The reduced coefficients are used as feature vectors to locate faults more accurately. Then, a multi-level thresholding based on fuzzy partition of the histogram and entropy theory is applied to classify image pixels into fault and non-fault. According to results and assessments, this method is very efficient in accurately locating faults and eliminates the need for manually interpret fault surfaces.

Keywords
seismic
fault detection
curvelet
contourlet
fuzzy entropy
References
  1. Amirpour Asl, A. and Shad Manaman, N., 2020. Application of the curvelet transform tosynthetic and real magnetic data. Explor. Geophys., 51: 285-299.
  2. Alparone, L., Baronti, S., Garzelli, A. and Nencini, F., 2006. The curvelet transform forfusion of very-high resolution multi-spectral and panchromatic images. In: Proc.25th EARSeL Symp., Porto, Portugal. Millpress Science Publishers, Amsterdam.
  3. Al-Sharhan, S., Karray, F., Gueaieb, W. and Basir, O., 2001. Fuzzy entropy: a briefsurvey. 10th IEEE Internat. Conf. Fuzzy Syst. (Cat. No. 01CH37297), 3: 1135-
  4. Bahorich, M. and Farmer, S., 1995. 3-D seismic discontinuity for faults and stratigraphiceatures: The coherence cube. The Leading Edge, 14: 1053-1058.
  5. Bamberger, R.H. and Smith, M.J., 1992. A filter bank for the directional decompositionof images: Theory and design. IEEE Transact. Signal Process., 40: 882-893.
  6. Candés, E.J., 2003. What is... a curvelet? Notic. Am. Mathemat. Soc., 50: 1402-1403.
  7. Candés, E.J. and Demanet, L., 2003. Curvelets and Fourier integral operators. Compt.Rendus Mathemat., 336: 395-398.
  8. Candés, E.J. and Guo, F., 2002. New multiscale transforms, minimum total variationsynthesis Applications to edge preserving image reconstruction. Sign. Process.,82: 1519-1543.
  9. Candés, E.J. and Donoho, D.L., 2000. Curvelets: A surprisingly effective nonadaptiverepresentation for objects with edges. Stanford Univ. Dept. of Statistics, Stanford,CA.
  10. Candés, E.J. and Donoho, D.L., 2004. New tight frames of curvelets and optimalrepresentations of objects with piecewise C2 singularities. Commun. PureAppl. Mathemat., 57: 219-266.
  11. Cao, J., De Luca, A. and Termini, S., 1972. A definition of a nonprobabilistic entropy inthe setting of fuzzy sets theory. Informat. Control, 20: 301-312.
  12. Di, H. and Gao, D., 2014. A new algorithm for evaluating 3D curvature and curvaturegradient for improved fracture detection. Comput. Geosci., 70. 15-25.
  13. Do, M.N. and Vetterli, M., 2001. Pyramidal directional filter banks and curvelets.
  14. Proc. Internat. Conf. Image Process., (Cat. No. 01CH37205), 3: 158-161.
  15. Dong, Y. an Ma, J., 2011. Bayesian texture classification based on contourlet transformand BYY harmony learning of Poisson mixtures. IEEE Transact. Image Process.,21: 909-918.
  16. Femy, F.F. and Victor, S.P.. 2014. Feature extraction using contourlet transform forglaucomatous image classification. Internat. J. Comput. Applicat., 95: 18.
  17. Golpardaz, M., Helfroush, M.S., Danyali, H. and Ghaffari, R., 2021. Fully statistical,wavelet-based conditional random field (FSWCRF) for SAR image segmentation.Expert Syst. Applicat., 168: 114370.
  18. Hameed, A.S., 2021. A high secure speech transmission using audio steganography andduffing oscillator. Wireless Person. Commun., 120: 1-15.
  19. Li, L., Ma, L., Jiao, L., Liu, F., Sun, Q. and Zhao, J., 2020. Complex contourlet-CNN forpolarimetric SAR image classification. Patt. Recogn., 100: 107110.
  20. Li, W., Lin, Q., Wang, K. and Cai, K., 2021. Improving medical image fusion methodusing fuzzy entropy and nonsubsampling contourlet transform. Internat. J. Imag.Syst. Technol., 31: 204-214.
  21. Richard, J.L., 1994. Detection of zones of abnormal strains in structures using Gaussiancurvature analysis. AAPG Bull., 78: 1811-1819.
  22. Liu, G., Kang, H., Wang, Q., Tian, Y. and Wan, B., 2021. Contourlet-CNN for SARimage despeckling. Remote Sens., 13: 764.
  23. Lu, P., Guo, A. and Li, Y., 2021. Seismic resolution enhancement by the curvelettransform. Explor. Geophys., 52(6): 1-15.
  24. Mankar, R., Gajjela, C., Foroozandeh, F., Prasad, S., Mayerich, D. and Reddy, R., 2021.
  25. Multi-modal image sharpening in Fourier Transform Infrared (FTIR) microscopy.Analyst., 146: 4822-4834.
  26. Marfurt, K.J., Kirlin, R.L., Farmer, S.L. and Bahorich, M.S., 1998. 3-D seismic attributesusing a semblance-based coherency algorithm. Geophysics, 63: 1150-1165.
  27. Matos, M.C.D. and Osorio, P.L.M., 2002. Wavelet transform filtering in the 1D and 2Dfor ground roll suppression. Expanded Abstr., 72nd Ann. Internat. SEG.Mtg., SaltLake City: 2245-2248.
  28. Orujov, F., Maskeliiinas, R., DamaSevicius, R. and Wei, W., 2020. Fuzzy based imageedge detection algorithm for blood vessel detection in retinal images. Appl. SoftComput., 94: 106452.
  29. Pepper, R. and Van Bemmel, P., 2011. U.S. Patent No. 6,757,614. Washington, DC:US. Patent and Trademark Office.
  30. Rajini, N., 2019. A two-dimensional image segmentation method based on hybrid geneticalgorithm with particle swarm optimization and entropy. Internat. J. Appl.Engineer. Res., 14: 2270-2274.
  31. Roden, R., Smith, T. and Sacrey, D., 2015. Geologic pattern recognition from seismicattributes: Principal component analysis and self-organizing maps. Interpretation,3(4): SAE59-SAE83.
  32. Sang, Y., Pan, X. and Yan, C., 2019. Random noise redunction of seismic data in NSCTdomain. In: 2019 IEEE 25th Internat. Conf. Parallel Distrib. Syst. (ICPADS):933-936.
  33. Sarkar, S., Paul, S., Burman, R., Das, S. and Chaudhuri, S.S., 2014. A fuzzy entropybased multi-level image thresholding using differential evolution. In: Internat.
  34. Conf. Swarm, Evolutionary and Memetic Computing. Springer Verlag, Berlin:386-395.
  35. Starck, J.L., Donoho, D.L. and Candés, E.J., 2003. Astronomical image representation bythe curvelet transform. Astron. Astrophys., 398: 785-800.
  36. Van Bemmel, P.P. and Pepper, R.E., 2000. U.S. Patent No. 6,151,555. Washington, DC:USS. Patent and Trademark Office.
  37. Versaci, M. and Morabito, F.C., 2021. Image edge detection: A new approach based onfuzzy entropy and fuzzy divergence. Internat. J. Fuzzy Syst., 23(4): 1-19.
  38. Yu, M. and Yan, Z., 2011. Flexible surface multiple attenuation using the curvelettransform. Expanded Abstr., 81st. Ann. Internat, SEG Mtg., San Antonio: 3485-
  39. Zhang, H., Chen, X.-H. and Zhang, L.-Y., 2017. 3D simultaneous seismic datareconstruction and noise suppression based on the curvelet transform. Appl.Geophys., 14: 87-95.
  40. Zhao, J., 2016. Simultaneous seismic interpolation and denoising based on sparseinversion with a 3D low redundancy curvelet transform. Explor. Geophys., 48:422-429.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing