An efficient automatic Curvelet-Contourlet fault detection method using fuzzy entropy

Ghanavati, M. and Shad Manaman, N., 2022. An efficient automatic Curvelet-Contourlet fault detection method using fuzzy entropy. Journal of Seismic Exploration, 31: 219-238. Accurate detection of faults in seismic data can affect various disciplines such as subsurface geological studies, petroleum exploration, drilling strategies and production. Still, it is in general a manual and time consuming task. Therefore, bringing automatic methods to this field which can accurately extract useful information from seismic images and locate faults would be valuable. In this paper we propose a novel method for automatic seismic fault detection using combination of multiresolution multidirectional algorithms and fuzzy entropy theory. The paper employs Curvelet (CV) and Contourlet (CN) transforms for feature extraction from transformed domain and to capture both detail and smooth information content of the data. The proposed framework introduces a novel feature space by extracting features in temporal domain using CN transform to capture smooth contour information and CV transform to capture details along the curve features in order to improve detection performance. It also introduces an automatic feature selection algorithm using differentiation which highlights fault information, to isolate faults from reflectors adaptively. The reduced coefficients are used as feature vectors to locate faults more accurately. Then, a multi-level thresholding based on fuzzy partition of the histogram and entropy theory is applied to classify image pixels into fault and non-fault. According to results and assessments, this method is very efficient in accurately locating faults and eliminates the need for manually interpret fault surfaces.
- Amirpour Asl, A. and Shad Manaman, N., 2020. Application of the curvelet transform to
- synthetic and real magnetic data. Explor. Geophys., 51: 285-299.
- Alparone, L., Baronti, S., Garzelli, A. and Nencini, F., 2006. The curvelet transform for
- fusion of very-high resolution multi-spectral and panchromatic images. In: Proc.
- 25th EARSeL Symp., Porto, Portugal. Millpress Science Publishers, Amsterdam.
- Al-Sharhan, S., Karray, F., Gueaieb, W. and Basir, O., 2001. Fuzzy entropy: a brief
- survey. 10th IEEE Internat. Conf. Fuzzy Syst. (Cat. No. 01CH37297), 3: 1135-
- Bahorich, M. and Farmer, S., 1995. 3-D seismic discontinuity for faults and stratigraphic
- eatures: The coherence cube. The Leading Edge, 14: 1053-1058.
- Bamberger, R.H. and Smith, M.J., 1992. A filter bank for the directional decomposition
- of images: Theory and design. IEEE Transact. Signal Process., 40: 882-893.
- Candés, E.J., 2003. What is... a curvelet? Notic. Am. Mathemat. Soc., 50: 1402-1403.
- Candés, E.J. and Demanet, L., 2003. Curvelets and Fourier integral operators. Compt.
- Rendus Mathemat., 336: 395-398.
- Candés, E.J. and Guo, F., 2002. New multiscale transforms, minimum total variation
- synthesis Applications to edge preserving image reconstruction. Sign. Process.,
- 82: 1519-1543.
- Candés, E.J. and Donoho, D.L., 2000. Curvelets: A surprisingly effective nonadaptive
- representation for objects with edges. Stanford Univ. Dept. of Statistics, Stanford,
- CA.
- Candés, E.J. and Donoho, D.L., 2004. New tight frames of curvelets and optimal
- representations of objects with piecewise C2 singularities. Commun. Pure
- Appl. Mathemat., 57: 219-266.
- Cao, J., De Luca, A. and Termini, S., 1972. A definition of a nonprobabilistic entropy in
- the setting of fuzzy sets theory. Informat. Control, 20: 301-312.
- Di, H. and Gao, D., 2014. A new algorithm for evaluating 3D curvature and curvature
- gradient for improved fracture detection. Comput. Geosci., 70. 15-25.
- Do, M.N. and Vetterli, M., 2001. Pyramidal directional filter banks and curvelets.
- Proc. Internat. Conf. Image Process., (Cat. No. 01CH37205), 3: 158-161.
- Dong, Y. an Ma, J., 2011. Bayesian texture classification based on contourlet transform
- and BYY harmony learning of Poisson mixtures. IEEE Transact. Image Process.,
- 21: 909-918.
- Femy, F.F. and Victor, S.P.. 2014. Feature extraction using contourlet transform for
- glaucomatous image classification. Internat. J. Comput. Applicat., 95: 18.
- Golpardaz, M., Helfroush, M.S., Danyali, H. and Ghaffari, R., 2021. Fully statistical,
- wavelet-based conditional random field (FSWCRF) for SAR image segmentation.
- Expert Syst. Applicat., 168: 114370.
- Hameed, A.S., 2021. A high secure speech transmission using audio steganography and
- duffing oscillator. Wireless Person. Commun., 120: 1-15.
- Li, L., Ma, L., Jiao, L., Liu, F., Sun, Q. and Zhao, J., 2020. Complex contourlet-CNN for
- polarimetric SAR image classification. Patt. Recogn., 100: 107110.
- Li, W., Lin, Q., Wang, K. and Cai, K., 2021. Improving medical image fusion method
- using fuzzy entropy and nonsubsampling contourlet transform. Internat. J. Imag.
- Syst. Technol., 31: 204-214.
- Richard, J.L., 1994. Detection of zones of abnormal strains in structures using Gaussian
- curvature analysis. AAPG Bull., 78: 1811-1819.
- Liu, G., Kang, H., Wang, Q., Tian, Y. and Wan, B., 2021. Contourlet-CNN for SAR
- image despeckling. Remote Sens., 13: 764.
- Lu, P., Guo, A. and Li, Y., 2021. Seismic resolution enhancement by the curvelet
- transform. Explor. Geophys., 52(6): 1-15.
- Mankar, R., Gajjela, C., Foroozandeh, F., Prasad, S., Mayerich, D. and Reddy, R., 2021.
- Multi-modal image sharpening in Fourier Transform Infrared (FTIR) microscopy.
- Analyst., 146: 4822-4834.
- Marfurt, K.J., Kirlin, R.L., Farmer, S.L. and Bahorich, M.S., 1998. 3-D seismic attributes
- using a semblance-based coherency algorithm. Geophysics, 63: 1150-1165.
- Matos, M.C.D. and Osorio, P.L.M., 2002. Wavelet transform filtering in the 1D and 2D
- for ground roll suppression. Expanded Abstr., 72nd Ann. Internat. SEG.Mtg., Salt
- Lake City: 2245-2248.
- Orujov, F., Maskeliiinas, R., DamaSevicius, R. and Wei, W., 2020. Fuzzy based image
- edge detection algorithm for blood vessel detection in retinal images. Appl. Soft
- Comput., 94: 106452.
- Pepper, R. and Van Bemmel, P., 2011. U.S. Patent No. 6,757,614. Washington, DC:
- US. Patent and Trademark Office.
- Rajini, N., 2019. A two-dimensional image segmentation method based on hybrid genetic
- algorithm with particle swarm optimization and entropy. Internat. J. Appl.
- Engineer. Res., 14: 2270-2274.
- Roden, R., Smith, T. and Sacrey, D., 2015. Geologic pattern recognition from seismic
- attributes: Principal component analysis and self-organizing maps. Interpretation,
- 3(4): SAE59-SAE83.
- Sang, Y., Pan, X. and Yan, C., 2019. Random noise redunction of seismic data in NSCT
- domain. In: 2019 IEEE 25th Internat. Conf. Parallel Distrib. Syst. (ICPADS):
- 933-936.
- Sarkar, S., Paul, S., Burman, R., Das, S. and Chaudhuri, S.S., 2014. A fuzzy entropy
- based multi-level image thresholding using differential evolution. In: Internat.
- Conf. Swarm, Evolutionary and Memetic Computing. Springer Verlag, Berlin:
- 386-395.
- Starck, J.L., Donoho, D.L. and Candés, E.J., 2003. Astronomical image representation by
- the curvelet transform. Astron. Astrophys., 398: 785-800.
- Van Bemmel, P.P. and Pepper, R.E., 2000. U.S. Patent No. 6,151,555. Washington, DC:
- USS. Patent and Trademark Office.
- Versaci, M. and Morabito, F.C., 2021. Image edge detection: A new approach based on
- fuzzy entropy and fuzzy divergence. Internat. J. Fuzzy Syst., 23(4): 1-19.
- Yu, M. and Yan, Z., 2011. Flexible surface multiple attenuation using the curvelet
- transform. Expanded Abstr., 81st. Ann. Internat, SEG Mtg., San Antonio: 3485-
- Zhang, H., Chen, X.-H. and Zhang, L.-Y., 2017. 3D simultaneous seismic data
- reconstruction and noise suppression based on the curvelet transform. Appl.
- Geophys., 14: 87-95.
- Zhao, J., 2016. Simultaneous seismic interpolation and denoising based on sparse
- inversion with a 3D low redundancy curvelet transform. Explor. Geophys., 48:
- 422-429.