ARTICLE

Convolutional autoencoder neural network for seismic noise reduction

DARAPUREDDY HARITHA NITTALA SATYAVANI*
Show Less
CSIR - National Geophysical Research Institute, Hyderabad, India.,
JSE 2022, 31(3), 267–278;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Haritha, D. and Satyavani, N., 2022. Convolutional autoencoder neural network for seismic noise reduction. Journal of Seismic Exploration, 31: 267-278. Seismic noise reduction is one of the main steps in the data processing sequence that aids in proper seismic imaging and interpretation. For the purpose of noise reduction and to recover weaker / masked signals, we propose the scheme of an unsupervised convolutional autoencoder neural network. Cross-entropy is used as the loss function in the network. The adaptive moment estimation plays the role of a backpropagation algorithm that can optimize the loss function. The key parameters of the network, like convolutional layers, filter size, and learning rate have been selected after performing a series of tests with different values for each of the parameters and those results are also presented here. We show that the present network applied to the seismic data shows improvement in the reflections and also allows us to recover some of the weaker / masked signals. The results show that the proposed method is successful in suppressing the noise and enhancing the seismic signals.

Keywords
seismic data
noise reduction
convolutional layers
filter size
convolutional autoencoder
References
  1. Bednar, J.B., 1983. Applications of median filtering to deconvolution, pulse estimation,
  2. and statistical editing of seismic data. Geophysics, 48: 1598-1610.
  3. Bekara, M. and van der Baan, M., 2007. Local singular value decomposition for signal
  4. enhancement of seismic data. Geophysics, 72(2): V59-V65.
  5. Burger, H.C., Schuler, C.J. and Harmeling, S., 2012. Image denoising. Can plain neural
  6. networks compete with BM3D? IEEE Conf. Comput. Vis. Pattern Recognit.
  7. (CVPR), 2392-2399.
  8. Chen, H., Zhang, Y., Kalra, M.K., Lin, F., Chen, Y., Liao, P., Zhou, J. and Wang, G.,
  9. Low-dose ct with a residual encoder-decoder convolutional neural network.
  10. IEEE Transact. Medic. Imag., 36: 2524-2535.
  11. Chen, Y. and Pock, T., 2017. Trainable nonlinear reaction-diffusion: A flexible
  12. framework for fast and effective image restoration. IEEE Transact. Pattern
  13. Analys. Mach. Intellig., 39: 1256-1272.
  14. Chen, Y., Zhang, M., Bai, M. and Chen, W., 2019. Improving the signal-to-noise ratio of
  15. seismological datasets by unsupervised machine learning. Seismol. Res. Lett., 90:
  16. 1552-1564.
  17. Du, B., Xiong, W., Wu, J., Zhang, L., Zhang, L. and Tao, D., 2016. Stacked
  18. convolutional denoising auto-encoders for feature representation. IEEE Transact.
  19. Cybernet., 47: 1017-1027.
  20. Duncan, G. and Beresford, G., 1995. Some analyses of 2-D median f-k filters.
  21. Geophysics, 60: 1157-1168.
  22. Glinsky, M.E., Clark, G.A. and Cheng, P.K.Z., 1996. Automatic event picking in
  23. prestack migrated gathers using a probabilistic neural network. Geophysics, 66:
  24. 1488-1496.
  25. Gondara, L., 2016. Medical image denoising using convolutional denoising
  26. autoencoders. 16th Internat. IEEE Conf. Data Mining Workshops (ICDMW):
  27. 241-246.
  28. Harris, P. and White, R., 1997. Improving the performance of f-x prediction filtering at
  29. low signal-to-noise ratios. Geophys. Prosp., 45: 269-302.
  30. Huang, W., Wang, R., Chen, X. and Chen, Y., 2017a. Double least-squares projections
  31. method for signal estimation. IEEE Transact. Geosci. Remote Sens. Lett., 55:
  32. 4111-4129.
  33. Huang, L., Dong, X. and Clee, T.E., 2017. A scalable deep learning platform for
  34. identifying geologic features from seismic attributes. The Leading Edge, 36(3):
  35. 249-256.
  36. Jain, V. and Seung, S., 2009. Natural image denoising with convolutional networks.
  37. Advan. Neur. Informat. Process. Syst., (Vol. No. ???) 769-776.
  38. Kingma, D.P. and Ba, 本, 2014. Adam: a method for stochastic optimization. CoRR., Vol.
  39. abs/ 1412.6980, 1-15.
  40. Kline, D.M. and Berardi, V.L., 2005. Revisiting squared-error and cross-entropy
  41. functions for training neural network classifiers. Neural Comput. Applicat., 14:
  42. 310-318.
  43. Kononenko, I, 2001. Machine learning for medical diagnosis: history, state of the art
  44. and perspective. Artific. Intellig. Medic., 23: 89-109.
  45. Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2017. ImageNet classification with deep
  46. convolutional neural networks. Communicat. ACM, 60(6): 84-90.
  47. Li, T. and Mallick, S., 2014. Multicomponent, multi-azimuth pre-stack seismic
  48. waveform inversion for azimuthally anisotropic media using a parallel and
  49. computationally efficient non-dominated sorting genetic algorithm. Geophys. J.
  50. Internat., 200: 1136-1154.
  51. Nath, S.K., Chakraborty, S., Singh, S.K. and Ganguly, N., 1999. Velocity inversion in
  52. cross-hole seismic tomography by a counter-propagation neural network, genetic
  53. algorithm, and evolutionary programming techniques. Geophys. J. Internat., 138:
  54. 108-124.
  55. Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory
  56. and verification in a physical scale model. Geophysics, 64: 888-901.
  57. Ross, C.P. and Cole, D.M., 2017. A comparison of popular neural network facies-
  58. classification schemes. The Leading Edge, 36(4): 340-349.
  59. Rowley, H.A., Baluja, S. and Kanade, T., 1998. Neural network-based face detection.
  60. IEEE Transact. Patt. Analys. Mach. Intellig., 20: 23-38.
  61. Satyavani, N., Sain, K., Lall, M. and Kumar, B.J.P., 2008. Seismic attribute study for gas
  62. hydrates in the Andaman Offshore India. Marine Geophys. Res., 29: 167-175.
  63. Song, H., Yang, G., Chen, W., Xue, Y., Zhang, H. and Zhang, X., 2020. Seismic random
  64. noise suppression using deep convolutional autoencoder neural network. J. Appl.
  65. Geophys., 178: 104071.
  66. Wang, Y., Zhou, H., Zu, S., Mao, W. and Chen, Y., 2017. Three-operator proximal
  67. splitting scheme for 3D seismic data reconstruction. IEEE Geosci. Remote Sens.
  68. Lett., 14: 1830-1834.
  69. Wu, Z. and Liu, T., 2008. Wavelet transform methods in seismic data noise attenuation.
  70. Progr. Geophys., 23: 493- 499.
  71. Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L., 2017. Beyond a Gaussian
  72. denoiser. Residual learning of deep CNN for image denoising. IEEE Transact.
  73. Image Process., 26: 3142-3155.
  74. Zhang, M., Liu, Y., Bai, M. and Chen, Y., 2019. Seismic noise attenuation using
  75. unsupervised sparse feature learning. IEEE Transact. Geosci. Remote Sens.
  76. Lett., 57: 970-972.
  77. Zhao, Q., Du, Q., Sun, W. and Chen, Y., 2019. Iterative double Laplacian-scaled low-
  78. rank optimization for under-sampled and noisy signal recovery. Expanded Abstr.,
  79. 89th Ann. Internat. SEG Mtg., San Antonio: 4675-4679.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing