Convolutional autoencoder neural network for seismic noise reduction

Haritha, D. and Satyavani, N., 2022. Convolutional autoencoder neural network for seismic noise reduction. Journal of Seismic Exploration, 31: 267-278. Seismic noise reduction is one of the main steps in the data processing sequence that aids in proper seismic imaging and interpretation. For the purpose of noise reduction and to recover weaker / masked signals, we propose the scheme of an unsupervised convolutional autoencoder neural network. Cross-entropy is used as the loss function in the network. The adaptive moment estimation plays the role of a backpropagation algorithm that can optimize the loss function. The key parameters of the network, like convolutional layers, filter size, and learning rate have been selected after performing a series of tests with different values for each of the parameters and those results are also presented here. We show that the present network applied to the seismic data shows improvement in the reflections and also allows us to recover some of the weaker / masked signals. The results show that the proposed method is successful in suppressing the noise and enhancing the seismic signals.
- Bednar, J.B., 1983. Applications of median filtering to deconvolution, pulse estimation,
- and statistical editing of seismic data. Geophysics, 48: 1598-1610.
- Bekara, M. and van der Baan, M., 2007. Local singular value decomposition for signal
- enhancement of seismic data. Geophysics, 72(2): V59-V65.
- Burger, H.C., Schuler, C.J. and Harmeling, S., 2012. Image denoising. Can plain neural
- networks compete with BM3D? IEEE Conf. Comput. Vis. Pattern Recognit.
- (CVPR), 2392-2399.
- Chen, H., Zhang, Y., Kalra, M.K., Lin, F., Chen, Y., Liao, P., Zhou, J. and Wang, G.,
- Low-dose ct with a residual encoder-decoder convolutional neural network.
- IEEE Transact. Medic. Imag., 36: 2524-2535.
- Chen, Y. and Pock, T., 2017. Trainable nonlinear reaction-diffusion: A flexible
- framework for fast and effective image restoration. IEEE Transact. Pattern
- Analys. Mach. Intellig., 39: 1256-1272.
- Chen, Y., Zhang, M., Bai, M. and Chen, W., 2019. Improving the signal-to-noise ratio of
- seismological datasets by unsupervised machine learning. Seismol. Res. Lett., 90:
- 1552-1564.
- Du, B., Xiong, W., Wu, J., Zhang, L., Zhang, L. and Tao, D., 2016. Stacked
- convolutional denoising auto-encoders for feature representation. IEEE Transact.
- Cybernet., 47: 1017-1027.
- Duncan, G. and Beresford, G., 1995. Some analyses of 2-D median f-k filters.
- Geophysics, 60: 1157-1168.
- Glinsky, M.E., Clark, G.A. and Cheng, P.K.Z., 1996. Automatic event picking in
- prestack migrated gathers using a probabilistic neural network. Geophysics, 66:
- 1488-1496.
- Gondara, L., 2016. Medical image denoising using convolutional denoising
- autoencoders. 16th Internat. IEEE Conf. Data Mining Workshops (ICDMW):
- 241-246.
- Harris, P. and White, R., 1997. Improving the performance of f-x prediction filtering at
- low signal-to-noise ratios. Geophys. Prosp., 45: 269-302.
- Huang, W., Wang, R., Chen, X. and Chen, Y., 2017a. Double least-squares projections
- method for signal estimation. IEEE Transact. Geosci. Remote Sens. Lett., 55:
- 4111-4129.
- Huang, L., Dong, X. and Clee, T.E., 2017. A scalable deep learning platform for
- identifying geologic features from seismic attributes. The Leading Edge, 36(3):
- 249-256.
- Jain, V. and Seung, S., 2009. Natural image denoising with convolutional networks.
- Advan. Neur. Informat. Process. Syst., (Vol. No. ???) 769-776.
- Kingma, D.P. and Ba, 本, 2014. Adam: a method for stochastic optimization. CoRR., Vol.
- abs/ 1412.6980, 1-15.
- Kline, D.M. and Berardi, V.L., 2005. Revisiting squared-error and cross-entropy
- functions for training neural network classifiers. Neural Comput. Applicat., 14:
- 310-318.
- Kononenko, I, 2001. Machine learning for medical diagnosis: history, state of the art
- and perspective. Artific. Intellig. Medic., 23: 89-109.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2017. ImageNet classification with deep
- convolutional neural networks. Communicat. ACM, 60(6): 84-90.
- Li, T. and Mallick, S., 2014. Multicomponent, multi-azimuth pre-stack seismic
- waveform inversion for azimuthally anisotropic media using a parallel and
- computationally efficient non-dominated sorting genetic algorithm. Geophys. J.
- Internat., 200: 1136-1154.
- Nath, S.K., Chakraborty, S., Singh, S.K. and Ganguly, N., 1999. Velocity inversion in
- cross-hole seismic tomography by a counter-propagation neural network, genetic
- algorithm, and evolutionary programming techniques. Geophys. J. Internat., 138:
- 108-124.
- Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory
- and verification in a physical scale model. Geophysics, 64: 888-901.
- Ross, C.P. and Cole, D.M., 2017. A comparison of popular neural network facies-
- classification schemes. The Leading Edge, 36(4): 340-349.
- Rowley, H.A., Baluja, S. and Kanade, T., 1998. Neural network-based face detection.
- IEEE Transact. Patt. Analys. Mach. Intellig., 20: 23-38.
- Satyavani, N., Sain, K., Lall, M. and Kumar, B.J.P., 2008. Seismic attribute study for gas
- hydrates in the Andaman Offshore India. Marine Geophys. Res., 29: 167-175.
- Song, H., Yang, G., Chen, W., Xue, Y., Zhang, H. and Zhang, X., 2020. Seismic random
- noise suppression using deep convolutional autoencoder neural network. J. Appl.
- Geophys., 178: 104071.
- Wang, Y., Zhou, H., Zu, S., Mao, W. and Chen, Y., 2017. Three-operator proximal
- splitting scheme for 3D seismic data reconstruction. IEEE Geosci. Remote Sens.
- Lett., 14: 1830-1834.
- Wu, Z. and Liu, T., 2008. Wavelet transform methods in seismic data noise attenuation.
- Progr. Geophys., 23: 493- 499.
- Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L., 2017. Beyond a Gaussian
- denoiser. Residual learning of deep CNN for image denoising. IEEE Transact.
- Image Process., 26: 3142-3155.
- Zhang, M., Liu, Y., Bai, M. and Chen, Y., 2019. Seismic noise attenuation using
- unsupervised sparse feature learning. IEEE Transact. Geosci. Remote Sens.
- Lett., 57: 970-972.
- Zhao, Q., Du, Q., Sun, W. and Chen, Y., 2019. Iterative double Laplacian-scaled low-
- rank optimization for under-sampled and noisy signal recovery. Expanded Abstr.,
- 89th Ann. Internat. SEG Mtg., San Antonio: 4675-4679.