ARTICLE

Seismic residual static correction using BEADS

ZAHRA SADEGHI ALIREZA GOUDARZI PARVANEH PAKMANESH SADEGH MOGHADDAM
Show Less
Department of Geophysics, Graduate University of Advanced Technology, Kerman, Iran,
JSE 2022, 31(1), 65–80;
Submitted: 9 June 2021 | Accepted: 13 December 2021 | Published: 1 February 2022
© 2022 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Sadeghi, Z., Goudarzi, A., Pakmanesh, P. and Moghaddam, S., 2022. Seismic residual static correction using BEADS. Journal of Seismic Exploration, 31: 65-80. When seismic waves propagate through layers close to the surface, topography and velocity variations, as well as the thickness of this layer, change the shape of the travel-time hyperbolas. These deviations are known as static and cause misalignment and loss events in the CMP gathers, so estimating residual statics in complex areas is one of the greatest challenges in seismic data processing, and the results derived from them will affect the quality of the final reconstructed image and the results of the interpretation. In this research, at least in the category of seismic data processing, sparsity for the residual static correction is implemented for the first time. Baseline estimation and denoising using sparsity (BEADS) is based on modeling the series of seismogram peaks, as sparse with sparse derivatives, and additionally on modeling the datum as a low-pass signal. This method estimates the seismogram datum and residual static correction with sparsity and it's far assessed through evaluating with Gaussian smoothing that is a traditional method, using both synthetic and real seismic data.

Keywords
residual static correction
sparsity
datum correction
sparse derivative
penalty function
low-pass filtering
References
  1. Aghamiri, S.H. and Gholami, A., 2016. Residual static correction using denoising in thefx domain. J. Res. Appl. Geophys., 2: 1-9. DOI: 10.22044/JRAG.2016.652
  2. Barwick, V.J., 1999. Sources of uncertainty in gas chromatography and high-performance liquid chromatography. J. Chromatogr. A, 849: 13-33.
  3. Bioucas-Dias, J.M. and Figueiredo, M.A.T., 2008. An iterative algorithm for linearinverse problems with compound regularizers. Proc. Internat. Conf. ImageProcess.: 685-688.
  4. Brown, C.D., Vega-Montoto, L. and Wentzell, P.D., 2000. Derivative preprocessing andoptimal corrections for baseline drift in multivariate calibration. Appl. Spectrosc.,54: 1055-1068.
  5. Cappadona, S., Levander, F., Jansson, M., James, P., Cerutti, S. and Pattini, L., 2008.
  6. Wavelet-based method for noise characterization and rejection in high-performance liquid chromatography coupled to mass spectrometry. Anal. Chem.,80: 4960-4968.
  7. Chan, T.F., Osher, S. and Shen, J., 2001. The digital TV filter, and nonlinear denoising.IEEE Trans. Image Process, 10: 231-241.
  8. Chau, F.T. and Leung, A.K.-M., 2000. Application of wavelet transform in processingchromatographic data. In: Walczak, B. (Ed.), Wavelets in Chemistry. Elsevier
  9. Science Publishers, Amsterdam: 205-223. DOI:10.1016/S0922-3487(00)80034-9.
  10. Chen, S.S., Donoho, D.L. and Donoho, M.A., 1998. Atomic decomposition by basispursuit. SIAM J. Sci. Comput., 20: 33-61.
  11. Elboth, T., Qaisrani, H.H. and Hertweck, T., 2008. De-noising seismic data in the time-frequency domain. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas.Doi: doi.org/10.1190/1.3063887.
  12. Felinger, A., 1998. Data Analysis and Signal Processing in Chromatography. ElsevierScience Publishers, Amsterdam.
  13. Figueiredo, M.A.T., Bioucas-Dias, J.M. and Nowak, R.D., 2007. Majorization—minimization algorithms for wavelet-based image restoration. IEEE Transact.Image Process., 16: 2980-2991.
  14. Fischer, R., Hanson, K., Dose, V. and von der Linden, W., 2000. Background estimationin experimental spectra. Phys. Review E, 61: 1152-1160.
  15. Gan, F., Ruan, G. and Mo, J., 2006. Baseline correction by improved iterativepolynomial fitting with automatic threshold. Chem. Intell. Lab. Syst., 82: 59-65.
  16. Gulam Razul, S., Fitzgerald, W.J. and Andrieu, C., 2003. Bayesian model selection andparameter estimation of nuclear emission spectra using RJMCMC. Nucl. Instrum.Meth. Phys., 497: 492-510.
  17. Hatherly, P.J., Urosevic, M., Lambourne, A. and Evans, B.J., 1994. A simple approach tocalculating refraction statics corrections. Geophysics, 59: 156-160.
  18. Hu, Y., Jiang, T., Shen, A., Li, W., Wang, X. and Hu, J., 2007. A backgroundelimination method based on wavelet transform for Raman spectra. Chemometr.Intell. Lab. Syst., 85: 94-101.
  19. Kneen, M.A. and Annegarn, H.J., 1996. Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds. Nucl. Instr. Meth. Phys. Res. Sect. B.: 209-213.
  20. Kutyniok, G., 2014. Geometric separation by single-pass alternating thresholding. Appl.Computat. Harmon. Analys., 36: 23-50.
  21. Laeven, J.M. and Smit, H.C., 1985. Optimal peak area determination in the presence ofnoise. Anal. Chim. Acta, 176: 77-104. doi.org/10.1016/S0003-2670(00)8 1636-0.
  22. Liu, Y., Cai, W. and Shao, X., 2013. Intelligent background correction using an adaptivelifting wavelet. Chemometr. Intell. Lab. Syst., 25: 11-17.
  23. Mazet, V., Carteret, C., Brie, D., Idier, J. and Humbert, B., 2005. Background removalfrom spectra by designing and minimizing a non-quadratic cost function.Chemometr. Intell. Lab. Syst., 76. 121-133
  24. McNulty, D.A. and MacFie, H.J.H., 1998. The effect of different baseline estimators onthe limit of quantification in chromatography. J. Chemomet., 11: 1-11.
  25. Moore, A.W. and Jorgenson, J.W., 1993. Median filtering for removal of low-frequencybackground drift. Analyt. Chem., 65: 188-191.
  26. Ning, X., Selesnick, I. and Duval, L., 2014. Chromatogram baseline estimation anddenoising using sparsity (BEADS). Chemometr. Intell. Lab. Syst., 139: 156-167.
  27. Pan, L., Liu, Y., Zheng, H., Zhao, Y. and Guo, Q., 2019. First-break residual staticcorrections applied in the southern part of Anjihai area. Geophys. Prosp., 54:274-279.
  28. Rakheja, P. and Vig, R., 2016. Image denoising using combination of median filteringand wavelet transform. Int. J. Comput. Appl., 141(9).
  29. Ronen, J. and Claerbout, J.F., 1985. Surface-consistent residual statics estimation bystack-power maximization. Geophysics, 50: 2759-2767.de Rooi, J.J. and Eilers, P.H.C., 2012. Mixture models for baseline estimation.Chemometr. Intell. Lab. Syst., 117: 56-60.
  30. Ruckstuhl, A.F., Jacobson, M.P., Field, R.W. and Dodd, J.A., 2001. Baseline subtractionusing robust local regression estimation. J. Quantit. Spectrosc. Radiat. Transf.,68: 179-193.
  31. Smite, H.C. and Steigstra, H., 1988. Noise and detection limits in signal-integratinganalytical methods. In: Currie, L.A. (Ed.), Detection in Analytical Chemistry:
  32. Importance, Theory, and Practice. ACS Symposium Series, American ChemicalSoc.: 126-148. DOI: 10.1021/bk-1988-0361.ch007.
  33. Wiggins, R.A., Larner, K.L. and Wisecup, R.D., 1976. Residual statics analysis as ageneral linear inverse problem. Geophysics, 41: 922-938.
  34. Zhang, Z.M., Chen, S. and Liang, Y.Z., 2010. Baseline correction using adaptiveiteratively reweighted penalized least squares. The Analyst, 135: 1138-1146.DOI: 10.1039/b922045c.
  35. Zhao, J., Li, J. and Cheng, J., 2019. Seismic gathers residual static correction based onmatching pursuit algorithm. Expanded Abstr., 89th Ann. Internat. SEG Mtg., SanAntonio: 2918-2922.
  36. Zhou, Q., Cao, L. and Chen, A., 2018. Residual static corrections with the niche geneticalgorithm based on Poisson disk sampling. Geophys. Prosp., 53: 896-902.
  37. DOI: 10.13810/j.cnki. ISSN. 1000-72 10.2018.05.002
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing