ARTICLE

Estimation of the shear-wave velocity of shale-oil reservoirs: a case study of the Chang 7 member in the Ordos basin

ZHIJIAN FANG1 JING BA1* JOSÉ M. CARCIONE1,2 WENSHAN LIU1 CHANGSHENG WANG3
Show Less
1 School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, P.R. China.,
2 National Institute of Oceanography and Applied Geophysics (OGS), Trieste, Italy.,
3 Exploration and Development Research Institute of PetroChina Changqing Oilfield Company, Shanxi, Xi’an 710018, P.R. China.,
JSE 2022, 31(1), 81–104;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Fang, Z.J., Ba, J., Carcione, J.M., Liu, W.S. and Wang, C.S., 2022. Estimation of the shear-wave velocity of shale-oil reservoirs: a case study of the Chang 7 member in the Ordos basin. Journal of Seismic Exploration, 31: 81-104. The absence of shear-wave (S-wave) log data restricts the geophysical characterization and fluid identification of Chang 7 shale-oil reservoirs in Ordos Basin, and we have to make use of suitable rock-physics theories to overcome this problem. We reformulate the Xu-White model by combining the critical-porosity and Maxwell-BISQ models to predict the S-wave velocity, where the BISQ model includes a non-Newtonian (Maxwell) fluid. The approach takes into account rock composition, pore structure, fluid properties and saturation. Three wells with S-wave log data are considered to verify the feasibility of the method. The results show that the proposed reformulated approach is suitable for S-wave velocity estimation.

Keywords
shale oil
S-wave velocity prediction
Maxwell fluid
Xu-White model
critical porosity model
BISQ model
References
  1. Aryanti, E., Nugraha, A.D., Basuki, A. and Triastuty, H., 2018. 3D seismic tomography
  2. Vp, Vs and Vp/Vs ratio beneath Gede Volcano, West Java, Indonesia. Internat.
  3. Symp. Earth Hazard and Disaster Mitigation.
  4. Ba, J., Xu, W.H., Fu, L.Y., Carcione, J.M. and Zhang, L., 2017. Rock anelasticity due to
  5. patchy-saturation and fabric heterogeneity: A double double-porosity model of
  6. wave propagation. J. Geophys. Res. - Solid Earth, 122: 1949-1976.
  7. Bhakta, T. and Landre, M., 2014. Estimation of pressure-saturation changes for
  8. unconsolidated reservoir rocks with high Vp/Vs ratio. Geophysics,79(5): M35-M54.
  9. Bhuiyan, M.H. and Holt, R.M., 2012. Vp-Vs ratio as a lithological indicator for shallow
  10. reservoir. Extended Abstr., 74th EAGE Conf., Copenhagen.
  11. Biot, M.A., 1956a. Theory of propagation of elastic waves in a fluid-saturated porous
  12. solid, I: Low-frequency range. J. Acoust. Soc. Am., 28: 168-178.
  13. Biot, M.A., 1956b. Theory of propagation of elastic waves in a fluid-saturated porous
  14. solid, Il: Higher-frequency range. J. Acoust. Soc. Am, 28: 179-191.
  15. Biot, M.A., 1962. Mechanics of deformation and acoustic propagation in porous media, J.
  16. Appl. Phys., 33: 1482-1498.
  17. Brown, R. and Korringa, J., 1975. On the dependence of the elastic properties of a
  18. porous rock on the compressibility of the pore fluid. Geophysics, 40: 608-616.
  19. Brie, A., Pampuri, F., Marsala, A.F. and Meazza, O., 1995. Shear sonic interpretation in
  20. gas-bearing sands. SPE Ann. Techn. Conf. Exhibit., Dallas.
  21. Carcione, J.M., 2014. Wave Fields in Real Media, Theory and Numerical Simulation of
  22. Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media
  23. (3rd ed.). Elsevier Science Publishers, Amsterdam.
  24. Carcione, J.M., and Cavallini, F., 2002. Poisson’s ratio at high pore pressure. Geophys.
  25. Prosp., 50: 97-106.
  26. Carcione, J.M., Gurevich, B. and Cavallini, F., 2000. A generalized Biot-Gassmann
  27. model for the acoustic properties of shaley sandstones. Geophys. Prosp., 48:
  28. 539-557.
  29. Castagna, J.P., Batzle, M.L. and Eastwood, R.L., 1985. Relationships between
  30. compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics,
  31. 50: 571-581.
  32. Cui, Z.W., Liu, J-X. and Wang, K.X., 2003. Elastic waves in non-Newtonian (Maxwell)
  33. fluid-saturated porous media. Waves Rand. Med., 13: 191-203.
  34. Cui, Z.W., Wang, K.X., Cao, Z.L. and Hu, H.S., 2004. Slow waves propagation in BISQ
  35. poroelastic mode. Chin. J. Geophys., 53: 3083-3089.
  36. Cui, Z.W, Liu, J.X., Wang, C.X. and Wang, K.X., 2010. Elastic waves in Maxwell
  37. fluid-saturated porous media with the squirt flow mechanism. Chin. J. Geophys., 59:
  38. 8655-8661.
  39. Dvorkin, J. and Nur, A., 1993. Dynamic poroelasticity: A unified model with the Squirt
  40. and the Biot mechanisms. Geophysics, 58: 524-533.
  41. Dvorkin, J., Hoeksema, R.N. and Nur, A., 1994. The squirt-flow mechanism:
  42. macroscopic description. Geophysics, 59: 428-438.
  43. Downton, J.E., 2005. Seismic Parameter Estimation from AVO Inversion. University of
  44. Calgary, Department of Geology and Geophysics.
  45. EIA, 2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment
  46. of 137 Shale Formations in 41 Countries Outside the United States. Washington
  47. DC: U.S. Department of Energy.
  48. Gassmann, F., 1951. Uber die Elastic Poroser Media. Vierteljahrschrift der
  49. Naturforschenden Gesellschaft in Ziirich, 96: 1-23.
  50. Gholami, R., Moradzadeh, A., Rasouli, V. and Hanachi, J., 2014. Shear wave velocity
  51. prediction using seismic attributes and well log data. Acta Geophys., 62: 818-848.
  52. Han, D., Nur, A. and Morgan, D., 1986. Effect of porosity and Clay content on wave
  53. velocity in sandstones. Geophysics, 51: 2093-2107.
  54. Krief, M., Garat, J., Stellingwer, F.J. and Ventre, J., 1990. A petrophysical interpretation
  55. using the velocities of P- and S-waves (full-waveform sonic). Log Analyst, 31:
  56. 355-369.
  57. Kuster, G.T. and Tokséz, M.N., 1974. Velocity and attenuation of seismic waves in
  58. two-phase media: Part I. Theoretical formulations. Geophysics, 39: 587.
  59. Lee, M.W., 2003. Velocity Ratio and its Application to Predicting Velocities: US
  60. Department of the Interior, US Geological Survey.
  61. Li, L., Ma, J.F., Wang, H.F., Tan, M.Y., Cui, S.L., Zhang, Y.Y. and Qu, Z.P., 2017.
  62. Shear wave velocity prediction during CO-eor and sequestration in the gao89 well
  63. block of the Shengli oilfield. Appl. Geophys., 14: 372-380.
  64. Li, Q., 1992. Velocity regularities of P- and S-waves in formations. Oil Geophys. Prosp.,
  65. 27: 1-12.
  66. Mavko, G.M. and Nur, A., 1975. Melt squirt in the asthenosphere. J. Geophys. Res., 80:
  67. 1444-1448.
  68. Mavko, G., Mukerji, T. and Dvorkin, J., 1988. The Rock Physics Handbook: Tools for
  69. Seismic Analysis in Porous Media. Cambridge University Press, Cambridge.
  70. Nur, A. and Simmons, G., 1969. The effect of saturation on velocity in low porosity
  71. rocks. Earth Planet. Sci. Lett., 7: 183-193.
  72. Nur, A., 1992. Critical porosity and the seismic velocities in rocks. EOS Transact. AGU,
  73. 73: 43-66.
  74. Parvizi, S., Kharrat, R., Asef, M.R., Jahangiry, B. and Hashemi, A., 2015. Prediction of
  75. the shear wave velocity from compressional wave velocity for the Gachsaran
  76. formation. Acta Geophys., 63: 1231-1243.
  77. Pickett, G.R., 1963. Acoustic character logs and their applications in formation
  78. evaluation. J. Petrol. Technol., 15: 650-667.
  79. Pang, M.Q., Ba, J., Carcione, J.M., Picotti, S., Zhou, J. and Jiang, R., 2019. Estimation of
  80. porosity and fluid saturation in carbonates from rock-physics templates based on
  81. seismic Q. Geophysics, 84(6): M25-M36.
  82. Qadrouh, A.N., Carcione, J.M., Alajmi, M. and Alyousif, M.M., 2019. A tutorial on
  83. machine learning with geophysical applications. Boll. Geofis. Teor. Applic., 60:
  84. 375-402.
  85. Qadrouh, A.N., Carcione, J.M., Alajmi, M. and Ba, J., 2020. Bounds and averages of
  86. seismic quality factor Q. Studia Geophys. Geodaet., 64: 100-113.
  87. Smith, G.C. and Gidlow, M., 2000. A comparison of the fluid factor with 入 and p in
  88. AVO analysis. Expanded Abstr., 70th Ann. Internat. SEG Mtg., Calgary: 2484.
  89. Tsiklauri, D., 2002. Phenomenological model of propagation of the elastic waves in a
  90. fluid-saturated porous solid with non-zero boundary slip velocity. J. Acoust. Soc.
  91. Am., 112: 843-849.
  92. Tan, M.J., Peng, X., Cao, H.L., Wang, S.X. and Yuan, Y.J., 2015. Estimation of shear
  93. wave velocity from wireline logs in gas-bearing shale. J. Petrol. Sci. Engineer., 133:
  94. 352-366.
  95. Vanorio, T. and Mavko, G., 2006. Vp/Vs ratio in gas-pressured saturated sandstones.
  96. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans: 3541.
  97. Vernik, L., Castagna, J. and Omovie, S.J., 2017. Shear-wave velocity prediction in
  98. unconventional shale reservoirs. Geophysics, 83(1): 1-43.
  99. White, J.E., 1965. Seismic Waves: Radiation, Transmission, and Attenuation.
  100. McGraw-Hill Book Co., New York.
  101. Xu, S. and White, R.E., 1995. A new velocity model for clay-sand mixtures. Geophys.
  102. Prosp., 43: 91-118.
  103. Xu, S. and White, R.E., 1996. A physical model for shear wave velocity prediction.
  104. Geophys. Prosp., 44: 687-717.
  105. Yan, J., Lubbe, R. and Pillar, N., 2007. Variable aspect ratio method in the Xu-White
  106. model for AVO. Extended Abstr., 69th EAGE Conf., London.
  107. Zhang, J.F., Bi, H.B, Xu, H., Zhao, J.L., Zhao, D. and Geng, J.G., 2015. New progress
  108. and reference significance of overseas tight oil exploration and development. Acta
  109. Petrol. Sinica, 36: 127-137.
  110. Zhang, L., Ba, J., Carcione, J.M. and Sun, W.T., 2019. Modeling wave propagation in
  111. cracked porous media with penny-shaped inclusions. Geophysics, 84(4):
  112. WAI41-WAISI.
  113. Zhang, L., Ba, J. and Carcione, J.M., 2021. Wave propagation in infinituple-porosity
  114. media. J. Geophys. Res. - Solid Earth, 126: e2020JB021266.
  115. Zhou, L.H., Pu, X.G., Xiao, D.Q., Li, H.X. and Qu, N., 2018. Geological conditions for
  116. shale oil formation and the main controlling factors for the enrichment of the 2nd
  117. member of Kongdian Formation in the Cang dong Sag, Bohai Bay Basin. Nat. Gas
  118. Geosci., 29: 1323-1332.
  119. Zou, C.N., Tao, S.Z., Yang, Z., Hou, L.H., Yuan, X.J., Zhu, R.K., Jia, J.H., Wu, S.T.,
  120. Gong, Y.J., Gao, X.H., Wang, L. and Wang, J., 2013. Development of petroleum
  121. geology in china: discussion on continuous petroleum accumulation. J. Earth Sci.,
  122. 24: 796-803.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing