Estimation of the shear-wave velocity of shale-oil reservoirs: a case study of the Chang 7 member in the Ordos basin

Fang, Z.J., Ba, J., Carcione, J.M., Liu, W.S. and Wang, C.S., 2022. Estimation of the shear-wave velocity of shale-oil reservoirs: a case study of the Chang 7 member in the Ordos basin. Journal of Seismic Exploration, 31: 81-104. The absence of shear-wave (S-wave) log data restricts the geophysical characterization and fluid identification of Chang 7 shale-oil reservoirs in Ordos Basin, and we have to make use of suitable rock-physics theories to overcome this problem. We reformulate the Xu-White model by combining the critical-porosity and Maxwell-BISQ models to predict the S-wave velocity, where the BISQ model includes a non-Newtonian (Maxwell) fluid. The approach takes into account rock composition, pore structure, fluid properties and saturation. Three wells with S-wave log data are considered to verify the feasibility of the method. The results show that the proposed reformulated approach is suitable for S-wave velocity estimation.
- Aryanti, E., Nugraha, A.D., Basuki, A. and Triastuty, H., 2018. 3D seismic tomography
- Vp, Vs and Vp/Vs ratio beneath Gede Volcano, West Java, Indonesia. Internat.
- Symp. Earth Hazard and Disaster Mitigation.
- Ba, J., Xu, W.H., Fu, L.Y., Carcione, J.M. and Zhang, L., 2017. Rock anelasticity due to
- patchy-saturation and fabric heterogeneity: A double double-porosity model of
- wave propagation. J. Geophys. Res. - Solid Earth, 122: 1949-1976.
- Bhakta, T. and Landre, M., 2014. Estimation of pressure-saturation changes for
- unconsolidated reservoir rocks with high Vp/Vs ratio. Geophysics,79(5): M35-M54.
- Bhuiyan, M.H. and Holt, R.M., 2012. Vp-Vs ratio as a lithological indicator for shallow
- reservoir. Extended Abstr., 74th EAGE Conf., Copenhagen.
- Biot, M.A., 1956a. Theory of propagation of elastic waves in a fluid-saturated porous
- solid, I: Low-frequency range. J. Acoust. Soc. Am., 28: 168-178.
- Biot, M.A., 1956b. Theory of propagation of elastic waves in a fluid-saturated porous
- solid, Il: Higher-frequency range. J. Acoust. Soc. Am, 28: 179-191.
- Biot, M.A., 1962. Mechanics of deformation and acoustic propagation in porous media, J.
- Appl. Phys., 33: 1482-1498.
- Brown, R. and Korringa, J., 1975. On the dependence of the elastic properties of a
- porous rock on the compressibility of the pore fluid. Geophysics, 40: 608-616.
- Brie, A., Pampuri, F., Marsala, A.F. and Meazza, O., 1995. Shear sonic interpretation in
- gas-bearing sands. SPE Ann. Techn. Conf. Exhibit., Dallas.
- Carcione, J.M., 2014. Wave Fields in Real Media, Theory and Numerical Simulation of
- Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media
- (3rd ed.). Elsevier Science Publishers, Amsterdam.
- Carcione, J.M., and Cavallini, F., 2002. Poisson’s ratio at high pore pressure. Geophys.
- Prosp., 50: 97-106.
- Carcione, J.M., Gurevich, B. and Cavallini, F., 2000. A generalized Biot-Gassmann
- model for the acoustic properties of shaley sandstones. Geophys. Prosp., 48:
- 539-557.
- Castagna, J.P., Batzle, M.L. and Eastwood, R.L., 1985. Relationships between
- compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics,
- 50: 571-581.
- Cui, Z.W., Liu, J-X. and Wang, K.X., 2003. Elastic waves in non-Newtonian (Maxwell)
- fluid-saturated porous media. Waves Rand. Med., 13: 191-203.
- Cui, Z.W., Wang, K.X., Cao, Z.L. and Hu, H.S., 2004. Slow waves propagation in BISQ
- poroelastic mode. Chin. J. Geophys., 53: 3083-3089.
- Cui, Z.W, Liu, J.X., Wang, C.X. and Wang, K.X., 2010. Elastic waves in Maxwell
- fluid-saturated porous media with the squirt flow mechanism. Chin. J. Geophys., 59:
- 8655-8661.
- Dvorkin, J. and Nur, A., 1993. Dynamic poroelasticity: A unified model with the Squirt
- and the Biot mechanisms. Geophysics, 58: 524-533.
- Dvorkin, J., Hoeksema, R.N. and Nur, A., 1994. The squirt-flow mechanism:
- macroscopic description. Geophysics, 59: 428-438.
- Downton, J.E., 2005. Seismic Parameter Estimation from AVO Inversion. University of
- Calgary, Department of Geology and Geophysics.
- EIA, 2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment
- of 137 Shale Formations in 41 Countries Outside the United States. Washington
- DC: U.S. Department of Energy.
- Gassmann, F., 1951. Uber die Elastic Poroser Media. Vierteljahrschrift der
- Naturforschenden Gesellschaft in Ziirich, 96: 1-23.
- Gholami, R., Moradzadeh, A., Rasouli, V. and Hanachi, J., 2014. Shear wave velocity
- prediction using seismic attributes and well log data. Acta Geophys., 62: 818-848.
- Han, D., Nur, A. and Morgan, D., 1986. Effect of porosity and Clay content on wave
- velocity in sandstones. Geophysics, 51: 2093-2107.
- Krief, M., Garat, J., Stellingwer, F.J. and Ventre, J., 1990. A petrophysical interpretation
- using the velocities of P- and S-waves (full-waveform sonic). Log Analyst, 31:
- 355-369.
- Kuster, G.T. and Tokséz, M.N., 1974. Velocity and attenuation of seismic waves in
- two-phase media: Part I. Theoretical formulations. Geophysics, 39: 587.
- Lee, M.W., 2003. Velocity Ratio and its Application to Predicting Velocities: US
- Department of the Interior, US Geological Survey.
- Li, L., Ma, J.F., Wang, H.F., Tan, M.Y., Cui, S.L., Zhang, Y.Y. and Qu, Z.P., 2017.
- Shear wave velocity prediction during CO-eor and sequestration in the gao89 well
- block of the Shengli oilfield. Appl. Geophys., 14: 372-380.
- Li, Q., 1992. Velocity regularities of P- and S-waves in formations. Oil Geophys. Prosp.,
- 27: 1-12.
- Mavko, G.M. and Nur, A., 1975. Melt squirt in the asthenosphere. J. Geophys. Res., 80:
- 1444-1448.
- Mavko, G., Mukerji, T. and Dvorkin, J., 1988. The Rock Physics Handbook: Tools for
- Seismic Analysis in Porous Media. Cambridge University Press, Cambridge.
- Nur, A. and Simmons, G., 1969. The effect of saturation on velocity in low porosity
- rocks. Earth Planet. Sci. Lett., 7: 183-193.
- Nur, A., 1992. Critical porosity and the seismic velocities in rocks. EOS Transact. AGU,
- 73: 43-66.
- Parvizi, S., Kharrat, R., Asef, M.R., Jahangiry, B. and Hashemi, A., 2015. Prediction of
- the shear wave velocity from compressional wave velocity for the Gachsaran
- formation. Acta Geophys., 63: 1231-1243.
- Pickett, G.R., 1963. Acoustic character logs and their applications in formation
- evaluation. J. Petrol. Technol., 15: 650-667.
- Pang, M.Q., Ba, J., Carcione, J.M., Picotti, S., Zhou, J. and Jiang, R., 2019. Estimation of
- porosity and fluid saturation in carbonates from rock-physics templates based on
- seismic Q. Geophysics, 84(6): M25-M36.
- Qadrouh, A.N., Carcione, J.M., Alajmi, M. and Alyousif, M.M., 2019. A tutorial on
- machine learning with geophysical applications. Boll. Geofis. Teor. Applic., 60:
- 375-402.
- Qadrouh, A.N., Carcione, J.M., Alajmi, M. and Ba, J., 2020. Bounds and averages of
- seismic quality factor Q. Studia Geophys. Geodaet., 64: 100-113.
- Smith, G.C. and Gidlow, M., 2000. A comparison of the fluid factor with 入 and p in
- AVO analysis. Expanded Abstr., 70th Ann. Internat. SEG Mtg., Calgary: 2484.
- Tsiklauri, D., 2002. Phenomenological model of propagation of the elastic waves in a
- fluid-saturated porous solid with non-zero boundary slip velocity. J. Acoust. Soc.
- Am., 112: 843-849.
- Tan, M.J., Peng, X., Cao, H.L., Wang, S.X. and Yuan, Y.J., 2015. Estimation of shear
- wave velocity from wireline logs in gas-bearing shale. J. Petrol. Sci. Engineer., 133:
- 352-366.
- Vanorio, T. and Mavko, G., 2006. Vp/Vs ratio in gas-pressured saturated sandstones.
- Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans: 3541.
- Vernik, L., Castagna, J. and Omovie, S.J., 2017. Shear-wave velocity prediction in
- unconventional shale reservoirs. Geophysics, 83(1): 1-43.
- White, J.E., 1965. Seismic Waves: Radiation, Transmission, and Attenuation.
- McGraw-Hill Book Co., New York.
- Xu, S. and White, R.E., 1995. A new velocity model for clay-sand mixtures. Geophys.
- Prosp., 43: 91-118.
- Xu, S. and White, R.E., 1996. A physical model for shear wave velocity prediction.
- Geophys. Prosp., 44: 687-717.
- Yan, J., Lubbe, R. and Pillar, N., 2007. Variable aspect ratio method in the Xu-White
- model for AVO. Extended Abstr., 69th EAGE Conf., London.
- Zhang, J.F., Bi, H.B, Xu, H., Zhao, J.L., Zhao, D. and Geng, J.G., 2015. New progress
- and reference significance of overseas tight oil exploration and development. Acta
- Petrol. Sinica, 36: 127-137.
- Zhang, L., Ba, J., Carcione, J.M. and Sun, W.T., 2019. Modeling wave propagation in
- cracked porous media with penny-shaped inclusions. Geophysics, 84(4):
- WAI41-WAISI.
- Zhang, L., Ba, J. and Carcione, J.M., 2021. Wave propagation in infinituple-porosity
- media. J. Geophys. Res. - Solid Earth, 126: e2020JB021266.
- Zhou, L.H., Pu, X.G., Xiao, D.Q., Li, H.X. and Qu, N., 2018. Geological conditions for
- shale oil formation and the main controlling factors for the enrichment of the 2nd
- member of Kongdian Formation in the Cang dong Sag, Bohai Bay Basin. Nat. Gas
- Geosci., 29: 1323-1332.
- Zou, C.N., Tao, S.Z., Yang, Z., Hou, L.H., Yuan, X.J., Zhu, R.K., Jia, J.H., Wu, S.T.,
- Gong, Y.J., Gao, X.H., Wang, L. and Wang, J., 2013. Development of petroleum
- geology in china: discussion on continuous petroleum accumulation. J. Earth Sci.,
- 24: 796-803.