Cite this article
1
Download
44
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Estimation of the shear-wave velocity of shale-oil reservoirs: a case study of the Chang 7 member in the Ordos basin

ZHIJIAN FANG1 JING BA1* JOSÉ M. CARCIONE1,2 WENSHAN LIU1 CHANGSHENG WANG3
Show Less
1 School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, P.R. China.,
2 National Institute of Oceanography and Applied Geophysics (OGS), Trieste, Italy.,
3 Exploration and Development Research Institute of PetroChina Changqing Oilfield Company, Shanxi, Xi’an 710018, P.R. China.,
JSE 2022, 31(1), 81–104;
Submitted: 16 June 2021 | Accepted: 11 November 2021 | Published: 1 February 2022
© 2022 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Fang, Z.J., Ba, J., Carcione, J.M., Liu, W.S. and Wang, C.S., 2022. Estimation of the shear-wave velocity of shale-oil reservoirs: a case study of the Chang 7 member in the Ordos basin. Journal of Seismic Exploration, 31: 81-104. The absence of shear-wave (S-wave) log data restricts the geophysical characterization and fluid identification of Chang 7 shale-oil reservoirs in Ordos Basin, and we have to make use of suitable rock-physics theories to overcome this problem. We reformulate the Xu-White model by combining the critical-porosity and Maxwell-BISQ models to predict the S-wave velocity, where the BISQ model includes a non-Newtonian (Maxwell) fluid. The approach takes into account rock composition, pore structure, fluid properties and saturation. Three wells with S-wave log data are considered to verify the feasibility of the method. The results show that the proposed reformulated approach is suitable for S-wave velocity estimation.

Keywords
shale oil
S-wave velocity prediction
Maxwell fluid
Xu-White model
critical porosity model
BISQ model
References
  1. Aryanti, E., Nugraha, A.D., Basuki, A. and Triastuty, H., 2018. 3D seismic tomography
  2. Vp, Vs and Vp/Vs ratio beneath Gede Volcano, West Java, Indonesia. Internat.Symp. Earth Hazard and Disaster Mitigation.
  3. Ba, J., Xu, W.H., Fu, L.Y., Carcione, J.M. and Zhang, L., 2017. Rock anelasticity due topatchy-saturation and fabric heterogeneity: A double double-porosity model ofwave propagation. J. Geophys. Res. - Solid Earth, 122: 1949-1976.
  4. Bhakta, T. and Landre, M., 2014. Estimation of pressure-saturation changes forunconsolidated reservoir rocks with high Vp/Vs ratio. Geophysics,79(5): M35-M54.
  5. Bhuiyan, M.H. and Holt, R.M., 2012. Vp-Vs ratio as a lithological indicator for shallowreservoir. Extended Abstr., 74th EAGE Conf., Copenhagen.
  6. Biot, M.A., 1956a. Theory of propagation of elastic waves in a fluid-saturated poroussolid, I: Low-frequency range. J. Acoust. Soc. Am., 28: 168-178.
  7. Biot, M.A., 1956b. Theory of propagation of elastic waves in a fluid-saturated poroussolid, Il: Higher-frequency range. J. Acoust. Soc. Am, 28: 179-191.
  8. Biot, M.A., 1962. Mechanics of deformation and acoustic propagation in porous media, J.Appl. Phys., 33: 1482-1498.
  9. Brown, R. and Korringa, J., 1975. On the dependence of the elastic properties of aporous rock on the compressibility of the pore fluid. Geophysics, 40: 608-616.
  10. Brie, A., Pampuri, F., Marsala, A.F. and Meazza, O., 1995. Shear sonic interpretation ingas-bearing sands. SPE Ann. Techn. Conf. Exhibit., Dallas.
  11. Carcione, J.M., 2014. Wave Fields in Real Media, Theory and Numerical Simulation of
  12. Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media(3rd ed.). Elsevier Science Publishers, Amsterdam.
  13. Carcione, J.M., and Cavallini, F., 2002. Poisson’s ratio at high pore pressure. Geophys.Prosp., 50: 97-106.
  14. Carcione, J.M., Gurevich, B. and Cavallini, F., 2000. A generalized Biot-Gassmannmodel for the acoustic properties of shaley sandstones. Geophys. Prosp., 48:539-557.
  15. Castagna, J.P., Batzle, M.L. and Eastwood, R.L., 1985. Relationships betweencompressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics,50: 571-581.
  16. Cui, Z.W., Liu, J-X. and Wang, K.X., 2003. Elastic waves in non-Newtonian (Maxwell)fluid-saturated porous media. Waves Rand. Med., 13: 191-203.
  17. Cui, Z.W., Wang, K.X., Cao, Z.L. and Hu, H.S., 2004. Slow waves propagation in BISQporoelastic mode. Chin. J. Geophys., 53: 3083-3089.
  18. Cui, Z.W, Liu, J.X., Wang, C.X. and Wang, K.X., 2010. Elastic waves in Maxwellfluid-saturated porous media with the squirt flow mechanism. Chin. J. Geophys., 59:8655-8661.
  19. Dvorkin, J. and Nur, A., 1993. Dynamic poroelasticity: A unified model with the Squirtand the Biot mechanisms. Geophysics, 58: 524-533.
  20. Dvorkin, J., Hoeksema, R.N. and Nur, A., 1994. The squirt-flow mechanism:macroscopic description. Geophysics, 59: 428-438.
  21. Downton, J.E., 2005. Seismic Parameter Estimation from AVO Inversion. University ofCalgary, Department of Geology and Geophysics.
  22. EIA, 2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessmentof 137 Shale Formations in 41 Countries Outside the United States. WashingtonDC: U.S. Department of Energy.
  23. Gassmann, F., 1951. Uber die Elastic Poroser Media. Vierteljahrschrift der
  24. Naturforschenden Gesellschaft in Ziirich, 96: 1-23.
  25. Gholami, R., Moradzadeh, A., Rasouli, V. and Hanachi, J., 2014. Shear wave velocityprediction using seismic attributes and well log data. Acta Geophys., 62: 818-848.
  26. Han, D., Nur, A. and Morgan, D., 1986. Effect of porosity and Clay content on wavevelocity in sandstones. Geophysics, 51: 2093-2107.
  27. Krief, M., Garat, J., Stellingwer, F.J. and Ventre, J., 1990. A petrophysical interpretationusing the velocities of P- and S-waves (full-waveform sonic). Log Analyst, 31:355-369.
  28. Kuster, G.T. and Tokséz, M.N., 1974. Velocity and attenuation of seismic waves intwo-phase media: Part I. Theoretical formulations. Geophysics, 39: 587.
  29. Lee, M.W., 2003. Velocity Ratio and its Application to Predicting Velocities: USDepartment of the Interior, US Geological Survey.
  30. Li, L., Ma, J.F., Wang, H.F., Tan, M.Y., Cui, S.L., Zhang, Y.Y. and Qu, Z.P., 2017.
  31. Shear wave velocity prediction during CO-eor and sequestration in the gao89 wellblock of the Shengli oilfield. Appl. Geophys., 14: 372-380.
  32. Li, Q., 1992. Velocity regularities of P- and S-waves in formations. Oil Geophys. Prosp.,27: 1-12.
  33. Mavko, G.M. and Nur, A., 1975. Melt squirt in the asthenosphere. J. Geophys. Res., 80:1444-1448.
  34. Mavko, G., Mukerji, T. and Dvorkin, J., 1988. The Rock Physics Handbook: Tools for
  35. Seismic Analysis in Porous Media. Cambridge University Press, Cambridge.
  36. Nur, A. and Simmons, G., 1969. The effect of saturation on velocity in low porosityrocks. Earth Planet. Sci. Lett., 7: 183-193.
  37. Nur, A., 1992. Critical porosity and the seismic velocities in rocks. EOS Transact. AGU,73: 43-66.
  38. Parvizi, S., Kharrat, R., Asef, M.R., Jahangiry, B. and Hashemi, A., 2015. Prediction ofthe shear wave velocity from compressional wave velocity for the Gachsaranformation. Acta Geophys., 63: 1231-1243.
  39. Pickett, G.R., 1963. Acoustic character logs and their applications in formationevaluation. J. Petrol. Technol., 15: 650-667.
  40. Pang, M.Q., Ba, J., Carcione, J.M., Picotti, S., Zhou, J. and Jiang, R., 2019. Estimation ofporosity and fluid saturation in carbonates from rock-physics templates based onseismic Q. Geophysics, 84(6): M25-M36.
  41. Qadrouh, A.N., Carcione, J.M., Alajmi, M. and Alyousif, M.M., 2019. A tutorial onmachine learning with geophysical applications. Boll. Geofis. Teor. Applic., 60:375-402.
  42. Qadrouh, A.N., Carcione, J.M., Alajmi, M. and Ba, J., 2020. Bounds and averages ofseismic quality factor Q. Studia Geophys. Geodaet., 64: 100-113.
  43. Smith, G.C. and Gidlow, M., 2000. A comparison of the fluid factor with 入 and p in
  44. AVO analysis. Expanded Abstr., 70th Ann. Internat. SEG Mtg., Calgary: 2484.
  45. Tsiklauri, D., 2002. Phenomenological model of propagation of the elastic waves in afluid-saturated porous solid with non-zero boundary slip velocity. J. Acoust. Soc.Am., 112: 843-849.
  46. Tan, M.J., Peng, X., Cao, H.L., Wang, S.X. and Yuan, Y.J., 2015. Estimation of shearwave velocity from wireline logs in gas-bearing shale. J. Petrol. Sci. Engineer., 133:352-366.
  47. Vanorio, T. and Mavko, G., 2006. Vp/Vs ratio in gas-pressured saturated sandstones.
  48. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans: 3541.
  49. Vernik, L., Castagna, J. and Omovie, S.J., 2017. Shear-wave velocity prediction inunconventional shale reservoirs. Geophysics, 83(1): 1-43.
  50. White, J.E., 1965. Seismic Waves: Radiation, Transmission, and Attenuation.McGraw-Hill Book Co., New York.
  51. Xu, S. and White, R.E., 1995. A new velocity model for clay-sand mixtures. Geophys.Prosp., 43: 91-118.
  52. Xu, S. and White, R.E., 1996. A physical model for shear wave velocity prediction.Geophys. Prosp., 44: 687-717.
  53. Yan, J., Lubbe, R. and Pillar, N., 2007. Variable aspect ratio method in the Xu-Whitemodel for AVO. Extended Abstr., 69th EAGE Conf., London.
  54. Zhang, J.F., Bi, H.B, Xu, H., Zhao, J.L., Zhao, D. and Geng, J.G., 2015. New progressand reference significance of overseas tight oil exploration and development. ActaPetrol. Sinica, 36: 127-137.
  55. Zhang, L., Ba, J., Carcione, J.M. and Sun, W.T., 2019. Modeling wave propagation incracked porous media with penny-shaped inclusions. Geophysics, 84(4):WAI41-WAISI.
  56. Zhang, L., Ba, J. and Carcione, J.M., 2021. Wave propagation in infinituple-porositymedia. J. Geophys. Res. - Solid Earth, 126: e2020JB021266.
  57. Zhou, L.H., Pu, X.G., Xiao, D.Q., Li, H.X. and Qu, N., 2018. Geological conditions forshale oil formation and the main controlling factors for the enrichment of the 2ndmember of Kongdian Formation in the Cang dong Sag, Bohai Bay Basin. Nat. GasGeosci., 29: 1323-1332.
  58. Zou, C.N., Tao, S.Z., Yang, Z., Hou, L.H., Yuan, X.J., Zhu, R.K., Jia, J.H., Wu, S.T.,
  59. Gong, Y.J., Gao, X.H., Wang, L. and Wang, J., 2013. Development of petroleumgeology in china: discussion on continuous petroleum accumulation. J. Earth Sci.,24: 796-803.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing