3D data-domain reflection tomography for initial velocity model building using challenging 3D seismic data

Bakulin, A., Silvestrov, I., Neklyudov, D., Gadylshin, K. and Protasov, M., 2021. 3D data-domain reflection tomography for initial velocity model building using challenging 3D seismic data. Journal of Seismic Exploration, 30: 419-446. We present a novel workflow to build a reliable initial velocity depth model from challenging seismic data. This workflow is based on automated 3D grid reflection tomography that utilizes coherent poststack and prestack reflection events in the data domain. The workflow consists of two parts: data preconditioning and nonlinear tomographic inversion. Data preconditioning is underpinned by robust data-driven prestack data enhancement in the form of 3D nonlinear beamforming. Operating directly in the data domain, we obtain robust NMO velocities and pick main reflection events on stacked time images. Ray-based tomographic inversion fits prestack traveltimes approximated by hyperbolae using the engine of standard grid reflection tomography. Powerful prestack enhancement, combined with regularization of observed traveltimes by hyperbolae, delivers a robust and computationally efficient approach to reconstructing the velocity depth model directly in the data domain during the early stages of seismic processing. The new approach enables iterative depth processing critical for low signal-to-noise ratio data such as land seismic with small field arrays or single sensors. We present the tomographic workflow details and showcase the method’s capabilities using synthetic and real data examples.
- Al-Chalabi, M., 1973. Series approximation in velocity and traveltime computations.Geophys. Prosp., 21: 783-795.
- Alkhalifah, T., 1997. Velocity analysis using nonhyperbolic moveout in transverselyisotropic media. Geophysics, 62: 1839-1854.
- Bakulin, A., Silvestrov, I., Dmitriev, M., Neklyudov, D., Protasov, M., Gadylshin, K.,and Dolgov, 2020. Nonlinear beamforming for enhancement of 3D prestack landseismic data. Geophysics, 85 (3): 1MJ-Z13.
- Bakulin, A., Dmitriev, M., Silvestrov, I., Neklyudov, D., Gadylshin, K. and Protasov, P.,2018a. Efficient prestack enhancement based on local stacking: finding optimaldomain for modern 3D land-seismic data. Expanded Abstr., 88th Ann. Internat.SEG Mtg., Anaheim: 4598-4602.
- Bakulin, A., Silvestrov, I., Dmitriev, M., Neklyudov, D., Protasov, M., Gadylshin, K.,
- Tcheverda, V. and Dolgov, V., 2018b. Nonlinear beamforming for enhancingprestack data with challenging near surface or overburden. First Break, 36(12):121-126.
- Bakulin, A. and Erickson, K., 2017. Enhance-estimate-image: New processing approachfor single-sensor and other seismic data with low prestack signal-to-noise ratio.
- Expanded Abstr., 87th Ann. Internat. SEG Mtg., Houston: 5001-5005.de Bazelaire, E., 1988. Normal moveout revisited - inhomogeneous media and curvedinterfaces. Geophysics, 53: 143-157.
- Baykulov, M. and Gajewski, D., 2009. Prestack seismic data enhancement with partialcommon-reflection-surface (CRS) stack. Geophysics, 74(3): V49-V58.
- Berkovitch, A., Deev, K. and Landa, E., 2011. How non-hyperbolic multifocusingimproves depth imaging. First Break, 27: 95-103.
- Billette, F. and Lambaré, G., 1998. Velocity macro-model estimation bystereotomography. Geophys. J. Internat., 135: 671-680.
- Buzlukov, V. and Landa, E., 2013. Imaging improvement by prestack signalenhancement. Geophys. Prosp., 61: 1150-1158.
- Castle, R.J., 1988. Shifted hyperbolas and normal moveout. Expanded Abstr., 58th Ann.Internat. SEG Mtg., Anaheim: .3.
- Chauris, H., Noble, M.S., Lambaré, G. and Podvin, P., 2002. Migration velocity analysisfrom locally coherent events in 2D laterally heterogeneous media - Part I:Theoretical aspects. Geophysics, 67: 1202-1212.
- Duveneck, E., 2004. Tomographic determination of seismic velocity models withkinematic wavefield attributes. Logos Verlag, Berlin.
- Duveneck, E., 2004. Velocity model estimation with data-derived wavefront attributes.Geophysics, 69: 265-274.
- Diimmong S., Meier, K., Gajewski, D. and Hiibscher, C., 2008. Comparison of prestackstereotomography and NIP wave tomography for velocity model building:
- Instances from the Messinian evaporates. Geophysics, 73(5): WE291-VE302.
- Fagin S., 1999. Model Based Depth Imaging. SEG, Tulsa, OK.
- Fehmers, G.C. and Hocker, C.F.W., 2003. Fast structural interpretation with structure-oriented filtering. Geophysics, 68: 1286-1293.
- Guillaume, P., Lambaré, G., Leblanc, O., Mitouard, P., Moigne, K., Montel, J., Prescott,
- T., Siliqi, R., Vidal, N., Zhang, X. and Zimine, S., 2008. Kinematic invariants: anefficient and flexible approach for velocity model building. Expanded Abstr., 88thAnn. Internat. SEG Mtg., Anaheim.
- Guiziou, J.L., Mallet, J.L. and Madariaga, R., 1996. 3D seismic reflection tomography ontop of the GOCAD depth modeler. Geophysics, 61: 1499-1510.
- Gjoystdal, H. and Ursin, B., 1981. Inversion of reflection times in three dimensions.Geophysics, 46: 972-983.
- Hubral, P. and Krey, T., 1980. Interval Velocities from Seismic Reflection TimeMeasurements. SEG, Tulsa, OK.
- Jones, I.F., 2004. A review of 3D PreSDM model building techniques. First Break, 21:41-54.
- Jones, LF., 2010. An Introduction to Velocity Model Building. EAGE, Houten,Netherlands.
- Kliiver, T., 2006. Velocity model building using migration to residual time. Expanded
- Abstr., 88th Ann. Internat. SEG Mtg, Anaheim: 2022-2026.
- Lambaré, G., 2008. Stereotomography. Geophysics, 73(5): VE25-VE34.
- Lambaré, G., Guillaume, P. and Montel, J.P., 2014. Recent advances in ray-basedtomography. Extended Abstr., 76th EAGE Conf., Amsterdam: We G103 01.
- Lavaud, B., Baina, R. and Landa, E., 2004. Automatic robust velocity estimation bypoststack stereotomography. Expanded Abstr., 74th Ann. Internat. SEG Mtg.,Denver: 2351-2354.
- Van der Made, P.M., van Riel, P. and Berkhout, A.J., 1987. Estimation of complexvelocity models from stacking information. Expanded Abstr., 57th Ann. Internat.SEG Mtg., New Orleans: 821-823.
- Neckludov, D., Baina, R. and Landa, E., 2006. Residual stereotomographic inversion.Geophysics, 71(4): E35-E39.
- Paige, C.C. and Saunders, M.A., 1982. LSQR: An algorithm for sparse linear equationsand sparse least squares. ACM Transact. Math. Software, 8: 43-71.
- Rakotoarisoa, H., Guillaume, P., Blondel, P.C. and Charles, S., 1995. An adaptedgeometrical criterion for 3-D tomographic inversion. Expanded Abstr., 88th Ann.Internat. SEG Mtg., Anaheim: 1062-1065.
- Rauch-Davies, M., Berkovitch, A., Deev. K. and Landa, E., 2013. Non-hyperbolicmultifocusing imaging for prestack signal enhancement. Expanded Abstr., 83rdAnn. Internat. SEG Mtg., Houston: 4618-4622.
- Robein, E., 2010. Seismic Imaging: A Review of the Techniques, their Principles, Meritsand Limitations. EAGE, Houten, Netherlands.
- Scales, J., Gersztenkorn, A. and Treitel, S., 1988. Fast Ip solution of large, sparse linearsystems, application to seismic traveltime tomography. J. Comput. Phys., 75: 313-
- Sexton, P.A., 1998. 3D velocity-depth model building using surface seismic and welldata (SuperDix). Ph.D. Thesis, University of Durham., Durham.
- Sexton, P. and Williamson, P., 1998. 3D Anisotropic velocity estimation by model-basedinversion of prestack traveltimes. Expanded Abstr., 68th Ann. Internat. SEG Mtg.,New Orleans: 1855-1858.
- Tanushev, N., Popovici, A. and Hardesty, S., 2017. Fast, high-resolution beamtomography and velocity-model building. The Leading Edge, 36: 140-145.
- Tsvankin, I. and Thomsen, L., 1994. Nonhyperbolic reflection moveout in anisotropicmedia. Geophysics, 59: 1290-1304.
- Woodward, V., Nichols, D., Zdraveva, O., Whitfield, P. and Johns, T., 2008. A decade oftomography. Geophysics, 73(5): VE5-VE11.
- Yilmaz, O., 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation ofSeismic Data. SEG, Tulsa, OK.
- Xie, Y., 2017. 3D prestack data enhancement with a simplified CO CRS. ExtendedAbstr., 79th EAGE Conf., Paris: WeP7.13