ARTICLE

High-resolution seismic impedance inversion using improved CEEMD with adaptive noise

ABOLFAZL KHAN MOHAMMADI REZA MOHEBIAN ALI MORADZADEH
Show Less
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran,
JSE 2021, 30(5), 481–504;
Submitted: 21 February 2021 | Accepted: 2 August 2021 | Published: 1 October 2021
© 2021 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Seismic impedance inversion is an inevitable step in reservoir characterization required in both exploration and field works. It provides layer-based acoustic impedance property of rocks by imaging subsurface through the integration of data derived from seismic and well logging investigations. Recent studies providing subsurface rocks’ properties have highlighted the need to resolve seismic data’s nature, which is the limited frequency bandwidth. Although a significant amount of work has been done in the previous years by geophysicists, this problem continues. In this study, by implementing a powerful and robust time-frequency signal processing method, namely improved complementary ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), we propose a seismic inversion algorithm in order to overcome the mentioned problem. In other words, we propose an algorithm that improves the seismic impedance inversion in order to obtain subsurface images with higher resolution than other common impedance inversion methods. For a dataset, the proposed method resulted in a 98.44(%) correlation coefficient with 164.82 RMS error between the original log and inverted log while the commercial Band-limited, hard and soft constrained Model-based inversion methods resulted in a 91.29(%), 91.12(%) and 93.05(%) with 345.33, 322.39 and 295.48 RMS errors, respectively. Results demonstrate the resolution enhancement in impedance inversion by our proposed method in comparison to previous approaches.

Keywords
seismic inversion
acoustic impedance
empirical mode decomposition
improved CEEMD
F3 block
References
  1. Alvarez, P., Bolivar, F., Di Luca, M., and Salinas, T., 2015. Multiattribute rotationscheme: A tool for reservoir property prediction from seismic inversion attributes.Interpretation, 3(4): SAE9-SAE18.
  2. Amundsen, L. and Landrg, M., 2013. Broadband seismic technology and beyond: Part I:
  3. The drive for better bandwidth and resolution. GeoExplor., 10: 78-82.
  4. Bekara, M. and van der Baan, M., 2009. Random and coherent noise attenuation byempirical mode decomposition. Geophysics, 74(5): V89-V98.
  5. Carrazzone, J.J., Chang, D., Lewis, C., Shah, P.M. and Wang, D.Y., 1996. Method forderiving reservoir lithology and fluid content from pre-stack inversion of seismic data.Google Patents. (US Patent 5,583,825)
  6. Chen, Q. and Sidney, S., 1997. Seismic attribute technology for reservoir forecasting andmonitoring. The Leading Edge, 16: 445-448.
  7. Colominas, M.A., Schlotthauer, G. and Torres, M.E., 2014. Improved complete ensemble
  8. EMD: A suitable tool for biomedical signal processing. Biomedic. Sign. Process.Contr., 14: 19-29.
  9. Das, V., Pollack, A., Wollner, U. and Mukerji, T., 2018. Convolutional neural networkfor seismic impedance inversion. Expanded Abstr., 88th Ann. Internat. SEG Mtg.,Anaheim: 2071-2075.
  10. Ferguson, R.J. and Margrave, G.F., 1996. A simple algorithm for band-limited impedanceinversion. CREWES Research Report, 8(21), 1-10.
  11. Flandrin, P., Rilling, G. and Goncalves, P., 2004. Empirical mode decomposition as afilter bank. IEEE Sign. Process. Lett., 11: 112-114.
  12. Fnegqi, Q., Ya, W., Menghua, W., Xiaoying, F., Fusong, X., Haoqiang, L. and Jing, J.,
  13. Application of pre-stack and post-stack seismic multi-attribute inversion for oiland gas inspection of Niudong Buried Hill. China Petrol. Explor., 19(2), 39-45.
  14. Fu, L.-Y., 2004. Joint inversion of seismic data for acoustic impedance. Geophysics, 69:994-1004.
  15. Gholami, A., 2016. A fast automatic multichannel blind seismic inversion forhighresolution impedance recovery. Geophysics, 81(5): V357-V364.
  16. Grant, S.R., Hughes, M.J., Smith, S.R., Gasimov, A. and Pickard, M.C., 2017. One-dimensional stochastic inversion for seismic reservoir characterization - a case study.The Leading Edge, 36: 886-894.
  17. Han, J. and van der Baan, M., 2011. Empirical mode decomposition and robust seismicattribute analysis. Abstr., CSPG CSEG CWLS Conv., Vol. 114.
  18. Han, J. and van der Baan, M., 2013. Empirical mode decomposition for seismic time-frequency analysis. Geophysics, 78(2): O9-O19.
  19. Haris, A., Novriyani, M., Suparno, S., Hidayat, R. and Riyanto, A., 2017. Integratedseismic stochastic inversion and multi-attributes to delineate reservoir distribution,
  20. Case study MZ fields, Central Sumatra basin. AIP Conf. Proc. , Vol. 1862: 030180.
  21. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... Liu, H. H.(1998). The empirical mode decomposition and the hilbert spectrum for nonlinear andnon-stationary time series analysis. Proceedings of the Royal Society of London. Series
  22. A: mathematical, physical and engineering sciences, 454(1971), 903-995.
  23. Huang, N.E. and Wu, Z., 2008. A review on Hilbert-Huang transform: Method and itsapplications to geophysical studies. Rev. Geophys., 46(2).
  24. Jicheng, L., Gu, Y., Chou, Y. and Gu, J., 2020.. Seismic data random noise reductionusing a method based on improved complementary ensemble EMD and adaptiveinterval threshold. Explor. Geophys., 52: 137-149.
  25. Kushwaha, P.K., Maurya, S., Singh, N. and Rai, P., 2020. Use of maximum likelihoodsparse spike inversion and probabilistic neural network for reservoir characterization: astudy from F-3 block, The Netherlands. J. Petrol. Explor. Product. Technol., 10: 829-
  26. Latimer, R.B., Davidson, R. and van Riel, A., 2000. An interpreter’s guide tounderstanding and working with seismic-derived acoustic impedance data. TheLeading Edge, 19: 242-256.
  27. Li, K., Yin, X., Liu, J. and Zong, Z.,2019.. An improved stochastic inversion for jointestimation of seismic impedance and lithofacies. J. Geophys. Engineer., 16: 62-76.
  28. Lindseth, R.O., 1979. Synthetic sonic logs - a process for stratigraphic interpretation.Geophysics, 44: 3-26.
  29. Liu, C., Song, C., Lu, Q., Liu, Y., Feng, X. and Gao, Y., 2015. Impedance inversionbased on 11- norm regularization. J. Appl. Geophys., 120: 7-13.
  30. Lloyd, H., 2013. An investigation of the role of low frequencies in seismic impedanceinversion (Unpublished M.Sc. thesis). Graduate Studies, Univ. of Calgary, Calgary.
  31. Madiba, G.B. and McMechan, G.A., 2003. Seismic impedance inversion andinterpretation of a gas carbonate reservoir in the Alberta Foothills, Western Canada.Geophysics, 68: 1460-1469.
  32. Maurya, S. and Singh, K., 2015. Estimation of seismic parameters from prestackinversion. Abstr., 2nd Internat. Conf. Comp. Exp. Sci. Engineer. (ICCESEN), Antalya,Turkey.
  33. Maurya, S.P. and Singh, N.P., 2019. Estimating reservoir zone from seismic reflectiondata using maximum-likelihood sparse spike inversion technique: a case study from the
  34. Blackfoot Field (Alberta, Canada). J. Petrol. Explor. Product. Technol., 9: 1907-1918.
  35. Maurya, S.S., Singh, N. and Singh, K., 2020. Seismic Inversion Methods: A PracticalApproach. Springer Verlag, Berlin.
  36. Mhamdi, F., Poggi, J. and Jaidane, M., 2010. Empirical mode decomposition for trendextraction: application to electrical data. Abstr., 19th Internat. Conf. Computat. Statist.,Paris.
  37. Pendrel, J., 2006. Seismic inversion - a critical tool in reservoir characterization.Scandinav. Oil-Gas Magaz., 5(6): 19-22.
  38. Ray, A.K. and Chopra, S., 2016. Building more robust low-frequency models for seismicimpedance inversion. First Break, 34(5), 29-34.
  39. Riedel, M., Bellefleur, G., Mair, S., Brent, T.A. and Dallimore, S.R., 2009. Acousticimpedance inversion and seismic reflection continuity analysis for delineating gashydrate resources near the Mallik research sites, Mackenzie Delta, Northwest
  40. Territories, Canada. Geophysics, 74(5): B125-B137.
  41. Russell, B.H., 1988. Introduction to Seismic Inversion Methods. SEG, Tulsa, OK.
  42. Schuster, G.T., 2017. Seismic Inversion. SEG, Tulsa, OK.
  43. Shang, Z., Yuan, L. and Gong, Y., 2015. EMD interval thresholding denoising based oncorrelation coefficient to select relevant modes. 34th Chin. Control Conf.: 4801-4806.
  44. Torres, M.E., Colominas, M.A., Schlotthauer, G. and Flandrin, P., 2011. A completeensemble empirical mode decomposition with adaptive noise. Abstr., IEEE Internat.
  45. Conf. Acoust., Speech Sign. Process. (ICASSP), Prague: 4144-4147.
  46. Wang, Y., 2016. Seismic Inversion: Theory and Applications. John Wiley & Sons, NewYork.
  47. Wu, Z. and Huang, N.E., 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advan. Adapt. Data Analys., 1: 1-41.
  48. Xue, Y.-J., Cao, J.-X., Du, H.-K., Zhang, G.-L. and Yao, Y., 2016. Does mode mixingmatter in EMD-based highlight volume methods for hydrocarbon detection?
  49. Experimental evidence. J. Appl. Geophys., 132-210.
  50. Xue, Y.-X., Cao, J.-X., Wang, X.-J., Li, Y.-X. and Du, J., 2019. Recent developments inlocal wave decomposition methods for understanding seismic data: Application toseismic interpretation. Surv. Geophys., 40: 1185-1210.
  51. Yang, F. and Ma, J., 2019. Deep-learning inversion: A next-generation seismic velocitymodel building method. Geophysics, 84(4): R583-R599.
  52. Yeh, J.-R., Shieh, J.-S. and Huang, N.E., 2010. Complementary ensemble empirical modedecomposition: A novel noise enhanced data analysis method. Advan. Adapt. DataAnalys., 2: 135-156.
  53. Zahmatkesh, I., Kadkhodaie, A., Soleimani, B., Golalzadeh, A. and Azarpour, M., 2018.
  54. Estimating VSAND and reservoir properties from seismic attributes and acousticimpedance inversion: A case study from the Mansuri oilfield, SW Iran. J. Petrol. Sci.Engineer., 161: 259-274.
  55. Zhang, J., Guo, Y., Shen, Y., Zhao, D. and Li, M., 2018. Improved CEEMDAN-wavelettransform de-noising method and its application in well logging noise reduction. J.Geophys. Engineer., 15: 775-787.
  56. Zhang, R., Sen, M.K., Phan, S. and Srinivasan, S., 2012. Stochastic and deterministicseismic inversion methods for thin-bed resolution. J. Geophys. Engineer., 9: 611-618.
  57. Zhang, S. and Li, Y., 2020. Seismic exploration desert noise suppression based oncomplete ensemble empirical mode decomposition with adaptive noise. J. Appl.Geophys., 180: 104055.
  58. Zhou, D., Yin, X. and Zong, Z., 2019. Multi-trace basis-pursuit seismic inversion forresolution enhancement. Geophys. Prosp., 67: 519-531.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing