ARTICLE

High-resolution seismic impedance inversion using improved CEEMD with adaptive noise

ABOLFAZL KHAN MOHAMMADI REZA MOHEBIAN ALI MORADZADEH
Show Less
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran,
JSE 2021, 30(5), 481–504;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Seismic impedance inversion is an inevitable step in reservoir characterization required in both exploration and field works. It provides layer-based acoustic impedance property of rocks by imaging subsurface through the integration of data derived from seismic and well logging investigations. Recent studies providing subsurface rocks’ properties have highlighted the need to resolve seismic data’s nature, which is the limited frequency bandwidth. Although a significant amount of work has been done in the previous years by geophysicists, this problem continues. In this study, by implementing a powerful and robust time-frequency signal processing method, namely improved complementary ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), we propose a seismic inversion algorithm in order to overcome the mentioned problem. In other words, we propose an algorithm that improves the seismic impedance inversion in order to obtain subsurface images with higher resolution than other common impedance inversion methods. For a dataset, the proposed method resulted in a 98.44(%) correlation coefficient with 164.82 RMS error between the original log and inverted log while the commercial Band-limited, hard and soft constrained Model-based inversion methods resulted in a 91.29(%), 91.12(%) and 93.05(%) with 345.33, 322.39 and 295.48 RMS errors, respectively. Results demonstrate the resolution enhancement in impedance inversion by our proposed method in comparison to previous approaches.

Keywords
seismic inversion
acoustic impedance
empirical mode decomposition
improved CEEMD
F3 block
References
  1. Alvarez, P., Bolivar, F., Di Luca, M., and Salinas, T., 2015. Multiattribute rotation
  2. scheme: A tool for reservoir property prediction from seismic inversion attributes.
  3. Interpretation, 3(4): SAE9-SAE18.
  4. Amundsen, L. and Landrg, M., 2013. Broadband seismic technology and beyond: Part I:
  5. The drive for better bandwidth and resolution. GeoExplor., 10: 78-82.
  6. Bekara, M. and van der Baan, M., 2009. Random and coherent noise attenuation by
  7. empirical mode decomposition. Geophysics, 74(5): V89-V98.
  8. Carrazzone, J.J., Chang, D., Lewis, C., Shah, P.M. and Wang, D.Y., 1996. Method for
  9. deriving reservoir lithology and fluid content from pre-stack inversion of seismic data.
  10. Google Patents. (US Patent 5,583,825)
  11. Chen, Q. and Sidney, S., 1997. Seismic attribute technology for reservoir forecasting and
  12. monitoring. The Leading Edge, 16: 445-448.
  13. Colominas, M.A., Schlotthauer, G. and Torres, M.E., 2014. Improved complete ensemble
  14. EMD: A suitable tool for biomedical signal processing. Biomedic. Sign. Process.
  15. Contr., 14: 19-29.
  16. Das, V., Pollack, A., Wollner, U. and Mukerji, T., 2018. Convolutional neural network
  17. for seismic impedance inversion. Expanded Abstr., 88th Ann. Internat. SEG Mtg.,
  18. Anaheim: 2071-2075.
  19. Ferguson, R.J. and Margrave, G.F., 1996. A simple algorithm for band-limited impedance
  20. inversion. CREWES Research Report, 8(21), 1-10.
  21. Flandrin, P., Rilling, G. and Goncalves, P., 2004. Empirical mode decomposition as a
  22. filter bank. IEEE Sign. Process. Lett., 11: 112-114.
  23. Fnegqi, Q., Ya, W., Menghua, W., Xiaoying, F., Fusong, X., Haoqiang, L. and Jing, J.,
  24. Application of pre-stack and post-stack seismic multi-attribute inversion for oil
  25. and gas inspection of Niudong Buried Hill. China Petrol. Explor., 19(2), 39-45.
  26. Fu, L.-Y., 2004. Joint inversion of seismic data for acoustic impedance. Geophysics, 69:
  27. 994-1004.
  28. Gholami, A., 2016. A fast automatic multichannel blind seismic inversion for
  29. highresolution impedance recovery. Geophysics, 81(5): V357-V364.
  30. Grant, S.R., Hughes, M.J., Smith, S.R., Gasimov, A. and Pickard, M.C., 2017. One-
  31. dimensional stochastic inversion for seismic reservoir characterization - a case study.
  32. The Leading Edge, 36: 886-894.
  33. Han, J. and van der Baan, M., 2011. Empirical mode decomposition and robust seismic
  34. attribute analysis. Abstr., CSPG CSEG CWLS Conv., Vol. 114.
  35. Han, J. and van der Baan, M., 2013. Empirical mode decomposition for seismic time-
  36. frequency analysis. Geophysics, 78(2): O9-O19.
  37. Haris, A., Novriyani, M., Suparno, S., Hidayat, R. and Riyanto, A., 2017. Integrated
  38. seismic stochastic inversion and multi-attributes to delineate reservoir distribution,
  39. Case study MZ fields, Central Sumatra basin. AIP Conf. Proc. , Vol. 1862: 030180.
  40. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... Liu, H. H.
  41. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and
  42. non-stationary time series analysis. Proceedings of the Royal Society of London. Series
  43. A: mathematical, physical and engineering sciences, 454(1971), 903-995.
  44. Huang, N.E. and Wu, Z., 2008. A review on Hilbert-Huang transform: Method and its
  45. applications to geophysical studies. Rev. Geophys., 46(2).
  46. Jicheng, L., Gu, Y., Chou, Y. and Gu, J., 2020.. Seismic data random noise reduction
  47. using a method based on improved complementary ensemble EMD and adaptive
  48. interval threshold. Explor. Geophys., 52: 137-149.
  49. Kushwaha, P.K., Maurya, S., Singh, N. and Rai, P., 2020. Use of maximum likelihood
  50. sparse spike inversion and probabilistic neural network for reservoir characterization: a
  51. study from F-3 block, The Netherlands. J. Petrol. Explor. Product. Technol., 10: 829-
  52. Latimer, R.B., Davidson, R. and van Riel, A., 2000. An interpreter’s guide to
  53. understanding and working with seismic-derived acoustic impedance data. The
  54. Leading Edge, 19: 242-256.
  55. Li, K., Yin, X., Liu, J. and Zong, Z.,2019.. An improved stochastic inversion for joint
  56. estimation of seismic impedance and lithofacies. J. Geophys. Engineer., 16: 62-76.
  57. Lindseth, R.O., 1979. Synthetic sonic logs - a process for stratigraphic interpretation.
  58. Geophysics, 44: 3-26.
  59. Liu, C., Song, C., Lu, Q., Liu, Y., Feng, X. and Gao, Y., 2015. Impedance inversion
  60. based on 11- norm regularization. J. Appl. Geophys., 120: 7-13.
  61. Lloyd, H., 2013. An investigation of the role of low frequencies in seismic impedance
  62. inversion (Unpublished M.Sc. thesis). Graduate Studies, Univ. of Calgary, Calgary.
  63. Madiba, G.B. and McMechan, G.A., 2003. Seismic impedance inversion and
  64. interpretation of a gas carbonate reservoir in the Alberta Foothills, Western Canada.
  65. Geophysics, 68: 1460-1469.
  66. Maurya, S. and Singh, K., 2015. Estimation of seismic parameters from prestack
  67. inversion. Abstr., 2nd Internat. Conf. Comp. Exp. Sci. Engineer. (ICCESEN), Antalya,
  68. Turkey.
  69. Maurya, S.P. and Singh, N.P., 2019. Estimating reservoir zone from seismic reflection
  70. data using maximum-likelihood sparse spike inversion technique: a case study from the
  71. Blackfoot Field (Alberta, Canada). J. Petrol. Explor. Product. Technol., 9: 1907-1918.
  72. Maurya, S.S., Singh, N. and Singh, K., 2020. Seismic Inversion Methods: A Practical
  73. Approach. Springer Verlag, Berlin.
  74. Mhamdi, F., Poggi, J. and Jaidane, M., 2010. Empirical mode decomposition for trend
  75. extraction: application to electrical data. Abstr., 19th Internat. Conf. Computat. Statist.,
  76. Paris.
  77. Pendrel, J., 2006. Seismic inversion - a critical tool in reservoir characterization.
  78. Scandinav. Oil-Gas Magaz., 5(6): 19-22.
  79. Ray, A.K. and Chopra, S., 2016. Building more robust low-frequency models for seismic
  80. impedance inversion. First Break, 34(5), 29-34.
  81. Riedel, M., Bellefleur, G., Mair, S., Brent, T.A. and Dallimore, S.R., 2009. Acoustic
  82. impedance inversion and seismic reflection continuity analysis for delineating gas
  83. hydrate resources near the Mallik research sites, Mackenzie Delta, Northwest
  84. Territories, Canada. Geophysics, 74(5): B125-B137.
  85. Russell, B.H., 1988. Introduction to Seismic Inversion Methods. SEG, Tulsa, OK.
  86. Schuster, G.T., 2017. Seismic Inversion. SEG, Tulsa, OK.
  87. Shang, Z., Yuan, L. and Gong, Y., 2015. EMD interval thresholding denoising based on
  88. correlation coefficient to select relevant modes. 34th Chin. Control Conf.: 4801-4806.
  89. Torres, M.E., Colominas, M.A., Schlotthauer, G. and Flandrin, P., 2011. A complete
  90. ensemble empirical mode decomposition with adaptive noise. Abstr., IEEE Internat.
  91. Conf. Acoust., Speech Sign. Process. (ICASSP), Prague: 4144-4147.
  92. Wang, Y., 2016. Seismic Inversion: Theory and Applications. John Wiley & Sons, New
  93. York.
  94. Wu, Z. and Huang, N.E., 2009. Ensemble empirical mode decomposition: a noise-
  95. assisted data analysis method. Advan. Adapt. Data Analys., 1: 1-41.
  96. Xue, Y.-J., Cao, J.-X., Du, H.-K., Zhang, G.-L. and Yao, Y., 2016. Does mode mixing
  97. matter in EMD-based highlight volume methods for hydrocarbon detection?
  98. Experimental evidence. J. Appl. Geophys., 132-210.
  99. Xue, Y.-X., Cao, J.-X., Wang, X.-J., Li, Y.-X. and Du, J., 2019. Recent developments in
  100. local wave decomposition methods for understanding seismic data: Application to
  101. seismic interpretation. Surv. Geophys., 40: 1185-1210.
  102. Yang, F. and Ma, J., 2019. Deep-learning inversion: A next-generation seismic velocity
  103. model building method. Geophysics, 84(4): R583-R599.
  104. Yeh, J.-R., Shieh, J.-S. and Huang, N.E., 2010. Complementary ensemble empirical mode
  105. decomposition: A novel noise enhanced data analysis method. Advan. Adapt. Data
  106. Analys., 2: 135-156.
  107. Zahmatkesh, I., Kadkhodaie, A., Soleimani, B., Golalzadeh, A. and Azarpour, M., 2018.
  108. Estimating VSAND and reservoir properties from seismic attributes and acoustic
  109. impedance inversion: A case study from the Mansuri oilfield, SW Iran. J. Petrol. Sci.
  110. Engineer., 161: 259-274.
  111. Zhang, J., Guo, Y., Shen, Y., Zhao, D. and Li, M., 2018. Improved CEEMDAN-wavelet
  112. transform de-noising method and its application in well logging noise reduction. J.
  113. Geophys. Engineer., 15: 775-787.
  114. Zhang, R., Sen, M.K., Phan, S. and Srinivasan, S., 2012. Stochastic and deterministic
  115. seismic inversion methods for thin-bed resolution. J. Geophys. Engineer., 9: 611-618.
  116. Zhang, S. and Li, Y., 2020. Seismic exploration desert noise suppression based on
  117. complete ensemble empirical mode decomposition with adaptive noise. J. Appl.
  118. Geophys., 180: 104055.
  119. Zhou, D., Yin, X. and Zong, Z., 2019. Multi-trace basis-pursuit seismic inversion for
  120. resolution enhancement. Geophys. Prosp., 67: 519-531.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing