ARTICLE

Self-adaptive edge-preserving smoothing and its applications in seismic impedance interpretation

RONG-HUO DAI1 YU-PEI ZHANG2 FAN-CHANG ZHANG3 CHENG YIN4
Show Less
1 School of Mathematics & Information, China West Normal University, Nanchong 637002, P.R. China,
3 School of Geosciences, China University of Petroleum (East China), Qingdao 266580, P.R. China,
4 School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, P.R. China,
JSE 2021, 30(4), 303–318;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Dai, R.-H., Zhang, Y.-P., Zhang, F.-C. and Yin, C., 2121. Self-adaptive edge-preserving smoothing and its applications in seismic impedance interpretation. Journal of Seismic Exploration, 30: 303-318. Seismic attributes, such as seismic impedance, AVO or AVA attributes, or other amplitude-like attributes, and so forth, increase the geological information interpretation ability of seismic data. However, in practical case, the calculation of seismic attributes is based on the mathematical formula, such as derivative or integration of seismic data. So, it also enhances random noise. Edge-preserving smoothing (EPS) method can suppress random noise along reflectors while preserving major stratigraphic or structural discontinuities features. These features are very important for seismic data’s geological interpretaion. However, the conventional EPS filter use fixed filter window size to perform in practice. Hence, the little geological features (e.g., channels, minor fault or thin layers) will be suppressed if their width are smaller than used filter window size. On the other hand, if the filter window size is too small, noise will not be removed sufficiently. In order to overcome this issue, we present a new EPS filter which uses a series of different window size and self-adaptively chooses the best one through filter window size scanning. The self-adpative EPS filter can strike a balance between noise remove and useful geological information protection. Applications on model tests and real data examples have shown the effectivity of the proposed method.

Keywords
self-adaptive edge-preserving smoothing
impedance interpretation
filter window size scanning
seismic attributes
References
  1. AlBinHassan, N.M., Luo, Y. and Al-Faraj M.N., 2006. 3D edge-preserving and
  2. applications. Geophysics, 71(4): P5-P11.
  3. Al-Dossary, S., Marfurt, K.J. and Luo, Y., 2002. 3-D edge preserving smoothing for
  4. seismic edge detection. Expanded Abstr., 72nd Ann. Internat. SEG Mtg., Salt lake
  5. City: 524-527.
  6. Al-Dossary, S. and Marfurt, K.J., 2006. 3D volumetric multispectral estimates of
  7. reflector curvature and rotation. Geophysics, 71(5): P41-P51.
  8. Al-Dossary, S. and Marfurt, K.J., 2007. Lineament-preserving filtering.Geophysics,72(1):
  9. PI-P8.
  10. Al-Dossary, S. and Wang, Y.E., 2011. Structure-preserving smoothing for 3D seismic
  11. attributes. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio:
  12. 1004-1008.
  13. Al-Shuhail, A. and Al-Dossary, S., 2020. Attenuation of Incoherent Seismic Noise.
  14. Springer Nature, Switzerland.
  15. Ba, J., Xu, W., Fu, L., Carcione, J.M. and Zhang, L., 2017. Rock anelasticity due to
  16. patchy-saturation and fabric heterogeneity: A double double-porosity model of
  17. wave propagation. J. Geophys. Res., Solid Earth, 122: 1949-1976.
  18. Ba, J., Zhang, L., Wang, D., Yuan, Z., Cheng, W., Ma, R. and Wu, C., 2018.
  19. Experimental analysis on P-wave attenuation in carbonate rocks and reservoir
  20. identification. J. Seismic Explor., 27: 371-402.
  21. Claerbout, J.F. and Muir, F., 1973. Robust modeling with erratic data. Geophysics, 38:
  22. 826-844.
  23. Cooke, D.A. and Schneider, W.A., 1983. Generalized linear inversion of reflection
  24. seismic data. Geophysics, 48: 665-676.
  25. Dai, R., Zhang, F., Liu, H. and Li, C., 2014a. Non-Linear Pre-Stack Seismic AVA
  26. nversion Based on Bayesian Theory Using Successive Iteration Method. J. Jilin
  27. Univ., Earth Science Ed., 44: 2026-2033.
  28. Dai, R., Zhang, F., Liu, H., Wang, P. and Zhang Z., 2014b. Method of AVA inversion
  29. using replacing parameters. Expanded Abstr., 84th Ann. Internat. SEG Mtg.,
  30. Denver: 559-563.
  31. Dai, R., Zhang, F. and Liu, H., 2015. AVA inversion using replacing parameters method
  32. for pre-stack seismic data. Prog. Geophys., 30: 261-266.
  33. Dai, R., Zhang, F. and Liu, H., 2016. Seismic inversion based on proximal objective
  34. function optimization algorithm. Geophysics, 81(5): R237-R246.
  35. Fehmers, G.C. and Hocker, C.F.W., 2003. Fast structural interpretation with
  36. structure-oriented filtering. Geophysics, 68: 1286-1293.
  37. Halpert, A.D., 2012. Edge-preserving smoothing for segmentation of seismic images.
  38. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
  39. Hocker, C. and Fehmers, G., 2002. Fast structural interpretation with structure-oriented
  40. filtering. The Leading Edge, 21: 238-243.
  41. Liu, Y., Luo, Y. and Wang, Y., 2009a. Vector median filter and its applications in
  42. geophysics. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 3342-3345.
  43. Liu, Y., Liu, C. and Wang, D., 2009b. A 1D time-varying median filter for seismic
  44. random, spike-like noise elimination. Geophysics, 74(1): V17-V24.
  45. Liu, Y. and Luo, Y., 2012. Reducing random noise in vector field using vector median
  46. filter. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
  47. Luo, Y., Marhoon, M., Al-Dossary, S. and Alfaraj, M., 2002. Edge-preserving smoothing
  48. and applications. The Leading Edge, 21: 136-158.
  49. Marfurt, K.J., 2006. Robust estimates of 3D reflector dip and azimuth. Geophysics, 71(4):
  50. P29-P40.
  51. Misra, S. and Sacchi, M.D., 2008. Global optimization with model-space preconditioning:
  52. Application to AVO inversion. Geophysics, 73(5): P71-P82.
  53. Pang, M., Ba, J., Carcione, J.M., Picotti, S., Zhou, J. and Jiang, R., 2019. Estimation of
  54. porosity and fluid saturation in carbonates from rock-physics templates based on
  55. seismic Q. Geophysics, 84 (6): M25-M36.
  56. Wang, Z., Yin, C., Fan, T. and Lei, X., 2012. Seismic geomorphology of a channel
  57. reservoir in lower Minghuazhen Formation, Laizhouwan subbasin, China.
  58. Geophysics, 77(4): B187-B195.
  59. Youzwishen, C.F., 2001. Non-linear sparse and blocky constraints for seismic inverse
  60. problems. University of Alberta.
  61. Zhang, F., Dai, R. and Liu, H., 2014. Seismic inversion based on Ll-norm misfit
  62. function and total variation regularization. J. Appl. Geophys., 109: 111-118.
  63. Zhang, F., Li, D. and Dai, R., 2015a. Seismic inversion based on edge preserving smooth
  64. regularization. J. China Univ. Min. Tech., 44: 255-261.
  65. Zhang, F., Dai, R. and Liu, H., 2015b. High order approximation for scattering matrix in
  66. layered elastic medium and its application in pre-stack seismic inversion. J. Petrol.
  67. Sci. Engineer., 131: 210-217.
  68. Zhang, F. and Dai, R., 2016. Nonlinear inversion of pre-stack seismic data using variable
  69. metric method. J. Appl. Geophys., 129: 111-125.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing