ARTICLE

Prestack seismic inversion based on adaptive mixed-norm constraints

YUKUN TIAN1 YANYAN MA1 TAO LI2 RUO WANG1 XIAOYU CHUAI3 WEI CHEN*4,5
Show Less
1 Key Laboratory of Unconventional Petroleum Geology, OGS, CGS, Beijing 100083, P.R. China.,
2 New Resources Geophysical Exploration Division, BGP Inc., CNPC, Zhuozhou, Hebei 072750, P.R. China.,
3 Hebei Coal Research Institute, Xingtai, Hebei 054000, P.R. China.,
4 Key Laboratory of Exploration Technology for Oil and Gas Resources of Ministry of Education, Yangtze University, Wuhan, Hubei 430100, P.R. China.,
5 Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Wuhan, Hubei 430100, P. R. China.,
JSE 2020, 29(2), 139–157;
Submitted: 25 December 2018 | Accepted: 20 December 2019 | Published: 1 April 2020
© 2020 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Tian, Y.K., Ma, Y.Y., Li, T., Wang, R., Chuai, X.Y. and Chen, W., 2020. Prestack seismic inversion based on adaptive mixed-norm constraints. Journal of Seismic Exploration, 29: 139-157. Prior information plays a critical role in seismic inversion, which is used to reduce the ill-posed problem. Most of the inversion methods assume that the noise obeys Gaussian distribution. However, due to the diversity of noise in seismic data, it can hardly meet the prior hypothesis. In this paper, a seismic prestack inversion method based on adaptive mixed-norm constraint is proposed to cope with the different noise distribution, and improve the noise suppressing ability of inversion algorithm in prestack seismic data. First, the noise analysis of actual shale gas is realized through the forward modeling of well logging data. Second, the constraints of the L norm and the L4 norm are added to the target function. The new algorithm combines the ability of Lz norm on super-Gaussian and Gaussian noise, and L4 norm on sub-Gaussian noise. It adaptively regulates the weights between Lz norm and L4 norm through Kurtosis. This method improves the adaptive ability of the algorithm to sub-Gaussian, Gaussian, and super-Gaussian noise. By identifying the types of noise, the adaptive mix-norm inversion method is used to test the model, and the prestack simultaneous inversion is carried out in the actual shale gas data. The results show that the proposed method can obtain better inversion results compared to conventional methods.

Keywords
prestack inversion
mixed-norm
noise suppressing
Kurtosis
References
  1. Alemie, W. and Sacchi, M.D., 2011. High-resolution three-term AVO inversion bymeans of a trivariate Cauchy probability distribution. Geophysics, 76(3): R43-R55.
  2. Buland, A. and Omre, H., 2003. Bayesian linearized AVO inversion. Geophysics, 68(1):185-198.
  3. Chen, J.J. and Yin, X.Y., 2007. Three-parameter AVO waveform inversion based on
  4. Bayesian theorem. Chin. J. Geophys. (in Chinese), 50:1251-1260.
  5. Chen, J.J., Yin, X.Y. and Zhang, G.Z., 2007. Simultaneous three term AVO inversionbased on Bayesian theorem. J. China Univ. Petrol. (Ed. Nat. Sci.), 31(3): 33-38.
  6. Chen, W., Chen, Y. and Liu, W., 2016. Ground roll attenuation using improvedcomplete ensemble empirical mode decomposition. J. Seismic Explor., 25: 485-495.
  7. Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017. Preparing the initial model for iterativedeblending by median filtering. J. Seismic Explor., 26(1): 25-47.
  8. Chen, W., Zhang, D. and Chen, Y., 2017. Random noise reduction using a hybridmethod based on ensemble empirical mode decomposition. J. Seismic Explor.,26(3): 227-249.
  9. Chen, W., Chen, Y. and Xie, J., 2017. Multiple reflections noise attenuation usingadaptive randomized-order empirical mode decomposition. IEEE Geosci. RemoteSens. Lett., 14(1): 18-22.hen, W., Chen, Y. and Cheng, X., 2017. Seismic time-frequency analysis using animproved empirical mode decomposition algorithm. J. Seismic Explor., 26(4):367-380.hen, Y., Zhou, Y. and Chen, W., 2017. Empirical low rank decomposition for seismicnoise attenuation. IEEE Transact. Geosci. Remote Sens., 55: 4696-4711.hen, Y. and Fomel, S., 2015. Random noise attenuation using local signal and-noiseorthogonalization. Geophysics, 80(6): WD1-WD9.hen, Y., Ma, J. and Fomel, S., 2016. Double-sparsity dictionary for seismic noiseattenuation. Geophysics, 81(2): V17-V30.hen, Y., Huang, W. and Zhang, D., 2016. An open-source Matlab code package forimproved rank-reduction 3D seismic data denoising and reconstruction. Comput.Geosci., 95: 59-66.
  10. Downton, J.E., 2005. Seismic Parameter Estimation from AVO Inversion. Ph.D. thesis,University of Calgary, Calgary.
  11. Fatti, J.L., Smith, G.C. and Vail, P.J., 1994. Detection of gas in sandstone reservoirsusing AVO analysis: A 3-D seismic case history using the Geostack technique.Geophysics, 59: 1362-1376.QCo ae CQ
  12. Karimi, O., Omre, H. and Mohammadzadeh, M., 2010. Bayesian closed-skew Gaussianinversion of seismic AVO data for elastic material properties. Geophysics, 75(1):R1-R11.
  13. Liu, Y., Zhang, J.S. and Hu, G.M., 2012. Study of three-term non-Gaussian pre-stackinversion method. Chin. J. Geophys., 55: 269-276.
  14. Li, Z., Liu, Z. and Song, C., 2015. Generalized Gaussian distribution based adaptivemixed-norm inversion for non-Gaussian noise. Expanded Abstr., 85th Ann. Internat.SEG Mtg., New Orleans.
  15. Mohammad, A.N.S, Saman, G. and Ehsan, O.T., 2017. Simultaneous denoising andinterpolation of 3D seismic data via damped data-driven optimal singular valueshrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
  16. Theune, U., Jensas, I.O. and Eidsvik, J., 2010. Analysis of prior models for a blockyinversion of seismic AVA data. Geophysics, 75(3): C25-C35.
  17. Saraswat, P. and Sen, M.K., 2012. Pre-stack inversion of angle gathers using a hybridevolutionary algorithm. J. Seismic Explor., 21:177-200.
  18. Tian, Y.K., Zhou, H. and Yuan, S.Y., 2013. Lithologic discrimination method based on
  19. Markov random-field. Chin. J. Geophys., 56:1360-1368.
  20. Tian, Y., Zhou, H. and Chen, H., 2013b. Bayesian prestack seismic inversion with aself-adaptive Huber-Markov random-field edge protection scheme. Appl. Geophys.,10: 453-460.
  21. Velis, D.R., 2005. Constrained inversion of reflection data using Gibbs' sampling. J.Seismic Explor., 14: 31-55.
  22. Wang, K., Sun, Z. and Dong, N., 2015. Prestack inversion based on anisotropic Markovrandom field-maximum posterior probability inversion and its application toidentify shale gas sweet spots. Appl. Geophys., 12: 533-544.
  23. Yuan, S.Y., Wang, S.X. and Li, G.F., 2012. Random noise reduction using Bayesianinversion. J. Geophys. Engineer., 9: 60-68.
  24. Yuan, S.Y. and Wang, S.X., 2013. Edge-preserving noise reduction based on Bayesianinversion with directional difference constraints. J. Geophys. Engineer., 10(2): 1-10.
  25. Yuan, S.Y., Wang, S.X. and Ma, M., 2017. Sparse Bayesian learning based time-variantdeconvolution. IEEE Transact. Geosci. Remote Sens., 55(11): 1-13.
  26. Zoeppritz, K., 1919. On the reflection and penetration of seismic waves throughunstable layers. Goettinger Nachr., 1: 66-84.
  27. Xie, J., Chen, W. and Zhang, D., 2017. Application of principal component analysis inweighted stacking of seismic data. IEEE Geosci. Remote Sens. Lett., 14:1213-1217.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing