ARTICLE

Prestack seismic inversion based on adaptive mixed-norm constraints

YUKUN TIAN1 YANYAN MA1 TAO LI2 RUO WANG1 XIAOYU CHUAI3 WEI CHEN*4,5
Show Less
1 Key Laboratory of Unconventional Petroleum Geology, OGS, CGS, Beijing 100083, P.R. China.,
2 New Resources Geophysical Exploration Division, BGP Inc., CNPC, Zhuozhou, Hebei 072750, P.R. China.,
3 Hebei Coal Research Institute, Xingtai, Hebei 054000, P.R. China.,
4 Key Laboratory of Exploration Technology for Oil and Gas Resources of Ministry of Education, Yangtze University, Wuhan, Hubei 430100, P.R. China.,
5 Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Wuhan, Hubei 430100, P. R. China.,
JSE 2020, 29(2), 139–157;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Tian, Y.K., Ma, Y.Y., Li, T., Wang, R., Chuai, X.Y. and Chen, W., 2020. Prestack seismic inversion based on adaptive mixed-norm constraints. Journal of Seismic Exploration, 29: 139-157. Prior information plays a critical role in seismic inversion, which is used to reduce the ill-posed problem. Most of the inversion methods assume that the noise obeys Gaussian distribution. However, due to the diversity of noise in seismic data, it can hardly meet the prior hypothesis. In this paper, a seismic prestack inversion method based on adaptive mixed-norm constraint is proposed to cope with the different noise distribution, and improve the noise suppressing ability of inversion algorithm in prestack seismic data. First, the noise analysis of actual shale gas is realized through the forward modeling of well logging data. Second, the constraints of the L norm and the L4 norm are added to the target function. The new algorithm combines the ability of Lz norm on super-Gaussian and Gaussian noise, and L4 norm on sub-Gaussian noise. It adaptively regulates the weights between Lz norm and L4 norm through Kurtosis. This method improves the adaptive ability of the algorithm to sub-Gaussian, Gaussian, and super-Gaussian noise. By identifying the types of noise, the adaptive mix-norm inversion method is used to test the model, and the prestack simultaneous inversion is carried out in the actual shale gas data. The results show that the proposed method can obtain better inversion results compared to conventional methods.

Keywords
prestack inversion
mixed-norm
noise suppressing
Kurtosis
References
  1. Alemie, W. and Sacchi, M.D., 2011. High-resolution three-term AVO inversion by
  2. means of a trivariate Cauchy probability distribution. Geophysics, 76(3): R43-R55.
  3. Buland, A. and Omre, H., 2003. Bayesian linearized AVO inversion. Geophysics, 68(1):
  4. 185-198.
  5. Chen, J.J. and Yin, X.Y., 2007. Three-parameter AVO waveform inversion based on
  6. Bayesian theorem. Chin. J. Geophys. (in Chinese), 50:1251-1260.
  7. Chen, J.J., Yin, X.Y. and Zhang, G.Z., 2007. Simultaneous three term AVO inversion
  8. based on Bayesian theorem. J. China Univ. Petrol. (Ed. Nat. Sci.), 31(3): 33-38.
  9. Chen, W., Chen, Y. and Liu, W., 2016. Ground roll attenuation using improved
  10. complete ensemble empirical mode decomposition. J. Seismic Explor., 25: 485-495.
  11. Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017. Preparing the initial model for iterative
  12. deblending by median filtering. J. Seismic Explor., 26(1): 25-47.
  13. Chen, W., Zhang, D. and Chen, Y., 2017. Random noise reduction using a hybrid
  14. method based on ensemble empirical mode decomposition. J. Seismic Explor.,
  15. 26(3): 227-249.
  16. Chen, W., Chen, Y. and Xie, J., 2017. Multiple reflections noise attenuation using
  17. adaptive randomized-order empirical mode decomposition. IEEE Geosci. Remote
  18. Sens. Lett., 14(1): 18-22.
  19. hen, W., Chen, Y. and Cheng, X., 2017. Seismic time-frequency analysis using an
  20. improved empirical mode decomposition algorithm. J. Seismic Explor., 26(4):
  21. 367-380.
  22. hen, Y., Zhou, Y. and Chen, W., 2017. Empirical low rank decomposition for seismic
  23. noise attenuation. IEEE Transact. Geosci. Remote Sens., 55: 4696-4711.
  24. hen, Y. and Fomel, S., 2015. Random noise attenuation using local signal and-noise
  25. orthogonalization. Geophysics, 80(6): WD1-WD9.
  26. hen, Y., Ma, J. and Fomel, S., 2016. Double-sparsity dictionary for seismic noise
  27. attenuation. Geophysics, 81(2): V17-V30.
  28. hen, Y., Huang, W. and Zhang, D., 2016. An open-source Matlab code package for
  29. improved rank-reduction 3D seismic data denoising and reconstruction. Comput.
  30. Geosci., 95: 59-66.
  31. Downton, J.E., 2005. Seismic Parameter Estimation from AVO Inversion. Ph.D. thesis,
  32. University of Calgary, Calgary.
  33. Fatti, J.L., Smith, G.C. and Vail, P.J., 1994. Detection of gas in sandstone reservoirs
  34. using AVO analysis: A 3-D seismic case history using the Geostack technique.
  35. Geophysics, 59: 1362-1376.
  36. Q
  37. Co ae CQ
  38. Karimi, O., Omre, H. and Mohammadzadeh, M., 2010. Bayesian closed-skew Gaussian
  39. inversion of seismic AVO data for elastic material properties. Geophysics, 75(1):
  40. R1-R11.
  41. Liu, Y., Zhang, J.S. and Hu, G.M., 2012. Study of three-term non-Gaussian pre-stack
  42. inversion method. Chin. J. Geophys., 55: 269-276.
  43. Li, Z., Liu, Z. and Song, C., 2015. Generalized Gaussian distribution based adaptive
  44. mixed-norm inversion for non-Gaussian noise. Expanded Abstr., 85th Ann. Internat.
  45. SEG Mtg., New Orleans.
  46. Mohammad, A.N.S, Saman, G. and Ehsan, O.T., 2017. Simultaneous denoising and
  47. interpolation of 3D seismic data via damped data-driven optimal singular value
  48. shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
  49. Theune, U., Jensas, I.O. and Eidsvik, J., 2010. Analysis of prior models for a blocky
  50. inversion of seismic AVA data. Geophysics, 75(3): C25-C35.
  51. Saraswat, P. and Sen, M.K., 2012. Pre-stack inversion of angle gathers using a hybrid
  52. evolutionary algorithm. J. Seismic Explor., 21:177-200.
  53. Tian, Y.K., Zhou, H. and Yuan, S.Y., 2013. Lithologic discrimination method based on
  54. Markov random-field. Chin. J. Geophys., 56:1360-1368.
  55. Tian, Y., Zhou, H. and Chen, H., 2013b. Bayesian prestack seismic inversion with a
  56. self-adaptive Huber-Markov random-field edge protection scheme. Appl. Geophys.,
  57. 10: 453-460.
  58. Velis, D.R., 2005. Constrained inversion of reflection data using Gibbs' sampling. J.
  59. Seismic Explor., 14: 31-55.
  60. Wang, K., Sun, Z. and Dong, N., 2015. Prestack inversion based on anisotropic Markov
  61. random field-maximum posterior probability inversion and its application to
  62. identify shale gas sweet spots. Appl. Geophys., 12: 533-544.
  63. Yuan, S.Y., Wang, S.X. and Li, G.F., 2012. Random noise reduction using Bayesian
  64. inversion. J. Geophys. Engineer., 9: 60-68.
  65. Yuan, S.Y. and Wang, S.X., 2013. Edge-preserving noise reduction based on Bayesian
  66. inversion with directional difference constraints. J. Geophys. Engineer., 10(2): 1-10.
  67. Yuan, S.Y., Wang, S.X. and Ma, M., 2017. Sparse Bayesian learning based time-variant
  68. deconvolution. IEEE Transact. Geosci. Remote Sens., 55(11): 1-13.
  69. Zoeppritz, K., 1919. On the reflection and penetration of seismic waves through
  70. unstable layers. Goettinger Nachr., 1: 66-84.
  71. Xie, J., Chen, W. and Zhang, D., 2017. Application of principal component analysis in
  72. weighted stacking of seismic data. IEEE Geosci. Remote Sens. Lett., 14:
  73. 1213-1217.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing