ARTICLE

Multiple attenuation using shaping regularization with seislet domain sparsity constraint

JIAN WU1 RUNQIU WANG1 YANGKANG CHEN2 YIZHUO ZHANG3 SHUWEI GAN1 CHAO ZHOU1
Show Less
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Fuxue Road 18, Beijing 102200, P.R. China.,
2 Bureau of Economic Geology, John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, University Station, Box X, Austin, TX 78713-8924, U.S.A.,
3 Institut de Physique du Globe de Paris (IPGP), 1 Rue Jussieu, 75005 Paris, France.,
JSE 2016, 25(1), 1–9;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wu, J., Wang, R., Chen, Y., Zhang, Y., Gan, S. and Zhou, C., 2016. Multiples attenuation using shaping regularization with seislet domain sparsity constraint. Journal of Seismic Exploration, 25: 1-9. In this paper, we propose a novel multiples attenuation approach based on seislet domain sparsity constraint (SSC). The basic principle of the proposed method is separating primaries and multiples according to the their difference in local slopes. We use the multiples model predicted by the surfaced related multiples elimination (SRME) approach to calculate the matching filter (MF) in order to obtain the initial multiples and initial primaries. The initial multiples and primaries are then used to calculate the local slope of both multiples and primaries used in the proposed iterative inversion framework. The local slope of estimated primaries and multiples can be updated during the iterations in order to get more precise result. A field data example demonstrate a successful performance of the proposed approach. Except for the removed surface-related multiples, the internal multiples can also be attenuated.

Keywords
multiples attenuation
seislet transform
sparse inversion
matching filtering
References
  1. Amundsen, L., Ikelle, L. and Berg, L., 2001. Multidimensional signature deconvolution and free
  2. surface multiple elimination of marine multicomponent ocean-bottom seismic data.
  3. Geophysics, 66: 1594-1604.
  4. Berkhout, A.J. and Blacquiére, G., 2014. Combining deblending with multi-level source deghosting.
  5. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver: 41-45.
  6. Carvalho, P.M., 1992. Free surface multiple reflection elimination method based on non-linear
  7. inversion of seismic data. Ph.D. thesis, Universidade Federal da Bahia, Salvador.
  8. Chen, Y., 2014. Deblending using a space-varying median filter. Explor. Geophys.,
  9. doi:http://dx.doi.org/10.1071/EG14051.
  10. Chen, Y., Fomel, S. and Hu, J., 2014a. Iterative deblending of simultaneous-source seismic data
  11. using seislet-domain shaping regularization. Geophysics, 79: V179-V189.
  12. Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical mode decomposition
  13. predictive filtering. Geophysics, 79: V81-V91.
  14. Chen, Y., Yuan, J., Jin, Z., Chen, K. and Zhang, L., 2014b. Deblending using normal moveout
  15. and median filtering in common-midpoint gathers. J. Geophys. Engineer., 11: 45-12.
  16. Donno, D., 2011. Improving multiple removal using least-squares dip filters and independent
  17. component analysis. Geophysics, 76: V91-V104.
  18. Fomel, S., 2002. Application of plane-wave destruction filters. Geophysics, 67: 1946-1960.
  19. Fomel, S., 2007. Shaping regularization in geophysical-estimation problems. Geophysics, 72: R29-
  20. R36.
  21. Fomel, S., 2009. Adaptive multiple subtraction using regularized nonstationary regression.
  22. Geophysics, 74: V25-V33.
  23. Fomel, S. and Liu, Y., 2010. Seislet transform and seislet frame. Geophysics, 75: V25-V38.
  24. Fomel, S., Sava, P., Vlad, I., Liu, Y. and Bashkardin, V., 2013. Madagascar open-source software
  25. project. J. Open Res. Softw., 1: e8.
  26. MULTIPLES ATTENUATION 9
  27. Foster, D.J. and Mosher, C.C., 1992. Suppression of multiple reflections using the radon transform.
  28. Geophysics, 57: 386-395.
  29. Huo, S. and Wang, Y., 2009. Improving adaptive subtraction in seismic multiple attenuation.
  30. Geophysics, 74: V59-V67.
  31. Sweldens, W., 1995. Lifting scheme: A new philosophy in biorthogonal wavelet constructions:
  32. Wavelet applications in signal and image processing iii: Proc. SPIE 2569, 160: 68-79.
  33. Verschuur, D.J., Berkhout, A.J. and Wapenaar, C.P.A., 1992. Adaptive surface-related multiple
  34. elimination. Geophysics, 57: 1166-1177.
  35. Weglein, A.B., 2013. The multiple attenuation toolbox: Progress, challenges and open issues.
  36. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 4493.
  37. Weglein, A.B., Aratjo, F.V., Carvalho, P.M., Stolt, R-H., Matson, K.H., Coates, R.T., Corrigan,
  38. D., Foster, D.J., Shaw, S.A. and Zhang, H., 2003. Inverse scattering series and seismic
  39. exploration. Inverse Probl., 19: R27-R83.
  40. Yang, W., Wang, R., Chen, Y. and Wu, J., 2014. Random noise attenuation using a new spectral
  41. decomposition method. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver: 4366-
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing